Vascularized Bone Marrow Transplantation

  • Chau Y. Tai
  • Louise F. Strande
  • Hidetoshi Suzuki
  • Martha S. Matthews
  • Chad R. Gordon
  • Charles W. Hewitt

The classic description of the Chimera since the days of ancient Greece dating to Homer was a beast with the head of a lion, the body of a goat, and the tail of a serpent. The concept of this mythical creature — one animal made from parts of others — remained the epitome of modern transplantation, symbolizing the American Society of Transplant Surgeons.


Superior Vena Cava Donor Bone Marrow Bone Marrow Transplantation Patient Composite Tissue Bone Marrow Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Hewitt, R. Ramsamooj, M. P. Patel, B. Yazdi, B. M. Achauer, K. S. Black, Development of stable mixed T cell chimerism and transplantation tolerance without immune modulation in recipients of vascularized bone marrow allografts, Transplantation 50, 766 (1990).PubMedCrossRefGoogle Scholar
  2. 2.
    D. K. Granger, W. C. Briedenbach, D. J. Pidwell, J. W. Jones, L. A. Baxter-Lowe, C. L. Kaufman, Lack of donor hyporesponsiveness and donor chimerism after clinical transplantation of the hand, Transplantation 74, 1624 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    P. Girman, J. Kriz, E. Dovolilova, E. Cihalova, F. Saudek, The effect of bone marrow transplantation on survival of allogeneic pancreatic islets with short-term tacrolimus conditioning in rats, Ann Transplant 6, 43 (2002).Google Scholar
  4. 4.
    N. G. Chung, D. C. Jeong, S. J. Park, et al., Cotransplantation of marrow stromal cells may prevent lethal graft-versus-host disease in major histocompatibility complex mismatched murine hematopoietic stem cell transplantation, Int J Hematol 30, 370 (2004).CrossRefGoogle Scholar
  5. 5.
    S. Janczewska, A. Ziolkowska, M. Durlik, W. L. Olszewski, B. Lukomska, Fast lymphoid reconstitution after vascularized bone marrow transplantation in lethally irradiated rats, Transplantation 68, 201 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    T. E. Starzl, Chimerism and tolerance in transplantation, Proc Natl Acad Sci U S A 101 Suppl 2, 14607 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    S. T. Ildstad, D. H. Sachs, Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts, Nature 307, 168 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    S. M. Pham, S. N. Mitruka, W. Youm, et al., Mixed hematopoietic chimerism induces donor-specific tolerance for lung allografts in rodents, Am J Respir Crit Care Med 1, 199 (1999).Google Scholar
  9. 9.
    T. Werkele, J. Kurtz, H. Ito, et al., Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment, Nat Med 6, 464 (2000).CrossRefGoogle Scholar
  10. 10.
    M. M. Durham, A. W. Bingaman, A. B. Adams, et al., Cutting edge: administration of anti-CD40 ligand and donor bone marrow leads to hemopoietic chimerism and donor-specific tolerance without cytoreductive conditioning, J Immunol 165, 1 (2000).PubMedGoogle Scholar
  11. 11.
    C. Domenig, A. Sanchez-Fueyo, J. Kurtz, et al., Roles of deletion and regulation in creating mixed chimerism and allograft tolerance using a nonlymphoablative irradiation-free protocol, J Immunol 175, 51 (2005).PubMedGoogle Scholar
  12. 12.
    B. Luo, S. A. Nanji, C. D. Schur, R. L. Pawlick, C. C. Anderson, A. M. J. Shapiro, Robust tolerance to fully allogeneic islet transplants achieved by chimerism with minimal conditioning, Transplantation 80, 370 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Umemura, H. Morita, X. C. Li, et al., Dissociation of hemopoietic chimerism and allograft tolerance after allogeneic bone marrow transplantation. J Immunol 167, 3043 (2001).PubMedGoogle Scholar
  14. 14.
    H. Xu, P. M. Chilton, Y. Huang, C. L. Schanie, S. T. Ildstad, Production of donor T cells is critical for induction of donor-specific tolerance and maintenance of chimerism, J Immunol 172, 1463 (2004).PubMedGoogle Scholar
  15. 15.
    R. D. Foster, S. Pham, S. Li, A. Aitouche, Long-term acceptance of composite tissue allografts through mixed chimerism and CD28 blockade, Transplantation 76, 988 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    C. A. Huang, Y. Fuchimoto, R. Scheier-Dolberg, M. C. Murphy, D. M. Neville Jr., D. H. Sachs, Stable mixed chimerism and tolerance using a nonmyeloablative preparative regimen in a large-animal model, J Clin Invest 105, 173 (2003).CrossRefGoogle Scholar
  17. 17.
    M. L. Schwarze, M. T. Menard, Y. Fuchimoto, et al., Mixed hematopoietic chimerism induces long-term tolerance to cardiac allografts in miniature swine, Ann Thorac Surg 70, 131 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    K. A. Prabhune, V. S. Gorantla, G. Perez-Abadia, et al., Composite tissue allotransplantation in chimeric hosts part II. A clinically relevant protocol to induce tolerance in a rat model, Transplantation 76, 1548 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    P. C. R. Brouha, G. Perez-Abadia, C. Francois, et al., Lymphadenectomy prior to rat hind limb allotransplantation prevents graft-versus-host disease in chimeric hosts. Transplant Int 17, 341 (2004).CrossRefGoogle Scholar
  20. 20.
    D. W. Mathes, M. A. Randolph, J. L. Bourget, et al., Recipient bone marrow engraftment in donor tissue after long-term tolerance to a composite tissue allograft, Transplantation 73, 1880 (2002).PubMedCrossRefGoogle Scholar
  21. 21.
    D. W. Mathes, M. A. Randolph, M. G. Solari, et al., Split tolerance to a composite tissue allograft in a swine model, Transplantation 75, 25 (2003).PubMedCrossRefGoogle Scholar
  22. 22.
    R. Garcia-Morales, V. Esquenazi, K. Zucker, et al., An assessment of the effects of cadaver donor bone marrow on kidney allograft recipient blood cell chimerism by a novel technique combining PCR and flow cytometry, Transplantation 62, 1149 (1996).PubMedCrossRefGoogle Scholar
  23. 23.
    R. Shapiro, A. S. Rao, R. J. Corry, et al., Kidney transplantation with bone marrow augmentation: five-year outcomes, Transpant Proc 33, 1134 (2001).CrossRefGoogle Scholar
  24. 24.
    A. S. Rao, I. Dvorchik, F. Dodson, et al., Donor bone marrow infusion in liver recipients: effect on the occurrence of acute cellular rejection, Transplant Proc 33, 1352 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    S. M. Pham, A. S. Rao, A. Zeevi, et al., A clinical trial combining donor bone marrow infusion and heart transplantation: intermediate-term results, J Thorac Cardiovasc Surg 119, 673 (2001).Google Scholar
  26. 26.
    S. M. Pham, A. S. Rao, A. Zeevi, et al., Effects of donor bone marrow infusion in clinical lung transplantation, Ann Thorac Surg 69, 345 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    M. T. Sellers, M. H. Deierhoi, J. J. Curtis, et al., Tolerance in renal transplantation after allogeneic bone marrow transplantation – 6-year follow-up, Transplantation 71, 1681 (2001).PubMedCrossRefGoogle Scholar
  28. 28.
    L. H. Buhler, T. R. Spitzer, M. Sykes, et al., Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease, Transplantation 74, 1405 (2002).PubMedCrossRefGoogle Scholar
  29. 29.
    E. C. Williamson, M. R. Millar, C. G. Steward, et al., Infections in adults undergoing unrelated donor bone marrow transplantation, Br J Haematol 104, 560 (1999).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Thomas, S. C. Clark, J. M. Rappeport, D. G. Nathan, S. G. Emerson, Deficient T cell granulocyte-macrophage colony stimulating factor production in allogeneic bone marrow transplant recipients, Transplantation 49, 703 (1990).PubMedGoogle Scholar
  31. 31.
    A. Devergie, J. Reiffers, J. P. Vernant, et al., Long-term follow-up after bone marrow transplantation of chronic myelogenous leukemia: factors associated with relapse, Bone Marrow Transplant 5, 379 (1990).PubMedGoogle Scholar
  32. 32.
    J. Balon, K. Halaburda, M. Bieniaszewska, et al., Early complete donor hematopoietic chimerism in peripheral blood indicates the risk of extensive graft-versus-host disease, Bone Marrow Transplant 35, 1083 (2005).PubMedCrossRefGoogle Scholar
  33. 33.
    J. E. Wagner, J. S. Thompson, S. L. Carter, N. A. Kernan, Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell Depletion Trial): a multi-centre, randomised phase II-III trial, Lancet 366, 733 (2005).PubMedCrossRefGoogle Scholar
  34. 34.
    P. Bianco, M. Riminucci, S. Gronthos, P. G. Robey, Bone marrow stromal stem cells: nature, biology, and potential applications, Stem Cells 19, 180 (2001).PubMedCrossRefGoogle Scholar
  35. 35.
    S. N. Shu, L. Wei, J. H. Wang, Y. T. Zhan, H. S. Chen, Y. Wang, Hepatic differentiation capability of rat bone marrow-derived mesenchymal stem cells and hematopoietic stem cells, World J Gastroenterol 10, 2818 (2004).PubMedGoogle Scholar
  36. 36.
    P. J. Simmons, D. Przepiorka, E. D. Thomas, B. Torok-Storb, Host origin of marrow stromal cells following allogeneic bone marrow transplantation, Nature 328, 429 (1987).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Keating, J. W. Singer, P. D. Killen, et al., Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man, Nature 298, 280 (1982).PubMedCrossRefGoogle Scholar
  38. 38.
    O. N. Koc, C. Peters, P. Aubourg, et al., Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases, Exp Hematol 27, 1675 (1999).PubMedCrossRefGoogle Scholar
  39. 39.
    T. Ishida, M. Inaba, H. Hisha, et al., Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor, J Immunol 152, 3119 (1994).PubMedGoogle Scholar
  40. 40.
    H. Hisha, T. Nishino, M. Kawamura, S. Adachi, S. Ikehara, Successful bone marrow transplantation by bone grafts in chimeric-resistant combination, Exp Hematol 23, 347 (1995).PubMedGoogle Scholar
  41. 41.
    Y. Li, H. Hisha, M. Inaba, et al., Evidence for migration of donor bone marrow stromal cells into recipient thymus after bone marrow transplantation plus bone grafts: a role of stromal cells in positive selection, Exp Hematol 28, 950 (2000).PubMedCrossRefGoogle Scholar
  42. 42.
    W. T. Tse, J. D. Pendleton, W. M. Beyer, M. C. Egalka, E. C. Guinan, Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation, Transplantation 75, 389 (2003).PubMedCrossRefGoogle Scholar
  43. 43.
    O. N. Koc, S. L. Gerson, B. W. Cooper, et al., Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy, J Clin Oncol 18, 307 (2000).PubMedGoogle Scholar
  44. 44.
    R. A. Cahill, O. Y. Jones, M. Klemperer, et al., Replacement of recipient stromal/mesenchymal cells after bone marrow transplantation using bone fragments and cultured osteoblast-like cells, Biol Blood Marrow Transplant 10, 709 (2004).PubMedCrossRefGoogle Scholar
  45. 45.
    Y. Tsuchida, M. Usui, T. Uede, Vascularized bone-marrow allotransplantation in rats prolongs the survival of simultaneously grafted alloskin, J Reconstr Microsurg 18, 289 (2002).PubMedCrossRefGoogle Scholar
  46. 46.
    B. Lukomska, S. Janczewska, B. Interewicz, M. Wisniewski, Engraftment of donor-derived stromal cells stimulates fast hematopoietic repopulation of vascularized bone marrow transplant recipients, Transplant Proc 33, 1757 (2001).PubMedCrossRefGoogle Scholar
  47. 47.
    R. M. Goldwyn, P. M. Beach, D. Feldman, R. E. Wilam, Canine limb homotransplantations, Plast Reconstr Surg 37, 184 (1966).PubMedCrossRefGoogle Scholar
  48. 48.
    K. Doi, Homotransplantation of limbs in rats. A preliminary report on an experimental study with no specific immunosuppressive drugs, Plast Reconstr Surg 64, 613 (1979).PubMedCrossRefGoogle Scholar
  49. 49.
    J. F. Borel, C. Feurer, H. U. Gubler, H. Stahelin, Biological effects of cyclosporin A: a new antilymphocytic agent, Agents Actions 6, 468 (1976).PubMedCrossRefGoogle Scholar
  50. 50.
    K. S. Black, C. W. Hewitt, L. A. Fraser, et al., Cosmas and Damian in the laboratory, N Engl J Med 306, 368 (1982).PubMedCrossRefGoogle Scholar
  51. 51.
    K. S. Black, C. W. Hewitt, L. A. Fraser, et al., Composite tissue (limb) allografts in rats. II. Indefinite survival using low-dose cyclosporine, Transplantation 39, 365 (1985).PubMedCrossRefGoogle Scholar
  52. 52.
    S. K. Kim, S. Aziz, P. Oyer, V. R. Hentz, Use of cyclosporine A in allotransplantation of rat limbs, Ann Plast Surg 12, 249 (1984).PubMedCrossRefGoogle Scholar
  53. 53.
    W. D. Fritz, W. M. Swartz, S. Rose, J. W. Futrell, E. Klein, Limb allografts in rats immunosuppressed with cyclosporine A, Ann Surg 199, 211 (1984).PubMedCrossRefGoogle Scholar
  54. 54.
    W. P. Lee, M. J. Yaremchuk, Y. C. Pan, M. A. Randolph, C. M. Tan, A. J. Weiland, Relative antigenicity of components of a vascularized limb allograft, Plast Reconstr Surg 87, 401 (1991).PubMedCrossRefGoogle Scholar
  55. 55.
    R. Buttemeyer, N. J. Jones, Z. Min, U. Rao, Rejection of the component tissues of limb allografts in rats immunosuppressed with FK-506 and cyclosporine, Plast Reconstr Surg 97, 139 (1994).Google Scholar
  56. 56.
    F. Zhang, D. Y. Shi, Z. Kryger, et al., Development of a mouse limb transplantation model, Microsurgery 19, 209 (1999).PubMedCrossRefGoogle Scholar
  57. 57.
    T. H. Tung, T. Mohanakumar, S. E. Mackinnon, Development of a mouse model for heterotopic limb and composite-tissue transplantation, J Reconstr Microsurg 17, 267 (2001).PubMedCrossRefGoogle Scholar
  58. 58.
    T. H. Tung, S. E. Mackinnon, T. Mohanakumar, Long-term limb allograft survival using anti-CD40L antibody in a murine model, Transplantation 75, 644 (2003).PubMedCrossRefGoogle Scholar
  59. 59.
    R. D. Foster, T. Liu, Orthotopic hindlimb transplantation in the mouse, J Reconstr Microsurg 19, 49 (2003).PubMedCrossRefGoogle Scholar
  60. 60.
    S. F. Santiago, W. de Faria, T. F. Khan, et al., Heterotopic sternum transplant in rats: a new model of a vascularized bone marrow transplantation, Microsurgery 19, 330 (1999).PubMedCrossRefGoogle Scholar
  61. 61.
    H. Suzuki, N. Patel, M. S. Matthews, A. J. DelRossi, E. J. Doolin, C. W. Hewitt, Vascularized bone marrow transplantation: a new surgical approach using isolated femoral bone/bone marrow, J Surg Res 89, 176 (2000).PubMedCrossRefGoogle Scholar
  62. 62.
    C. Y. Tai, M. A. France, L. F. Strande, et al., Extraperitoneal isolated vascularized bone marrow transplant model in the rat, Transplantation 75, 1591 (2003).PubMedCrossRefGoogle Scholar
  63. 63.
    C. Y. Tai,L. F. Strande, R. Eydelman, et al., Absence of graft-versus-host disease in the isolated vascularized bone marrow transplant, Transplantation 77, 316 (2004).PubMedCrossRefGoogle Scholar
  64. 64.
    C. Y. Tai, L. F. Strande, V. Lounev, et al., Vascularzied bone marrow transplantation: a new surgical approach to bone marrow transplantation induces immunological tolerance, Am J Transplant 5 Suppl, 366 (2005).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Chau Y. Tai
    • 1
  • Louise F. Strande
    • 2
  • Hidetoshi Suzuki
    • 3
  • Martha S. Matthews
    • 4
  • Chad R. Gordon
    • Charles W. Hewitt
      1. 1.Department of SurgeryKern Medical CenterBakersfieldCalifornia
      2. 2.Division of Surgical Research, Department of Surgery, UMDNJ-Robert Wood Johnson HospitalCooper University HospitalCamdenNew Jersey
      3. 3.Second Department of AnatomyHamamatsu University School of MedicineShizuokaJapan
      4. 4.Division of Plastic Surgery, Department of Surgery, Robert Wood Johnson Medical SchoolCooper University HospitalCamdenNew Jersey

      Personalised recommendations