Advertisement

New Approaches to Antibody Therapy

  • Dalibor Vasilic
  • Moshe Kon
  • Cedric G. Francois

The past years have seen the emergence of a new field in plastic surgery: composite tissue allotransplantation (CTA). While it has been used differently depending on context, CTA generally applies to the allotransplantation of vascularized tissues for the purpose of tissue reconstruction. While CTA has been performed for a few decades now (vascularized tendon and bone allotransplants were performed in select experimental settings as early as the 1980s and 1990s), the holy grail of CTA — the transplantation of vascularized tissues that contain a skin component — was achieved only recently (September 23, 1998) with the first human hand transplantation in Lyon (France).

Keywords

Acute Rejection Allograft Rejection Renal Allograft Solid Organ Transplantation Antibody Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Dubernard, et al., Human hand allograft: report on first 6 months, Lancet 353(9161), 315–20 (1999).CrossRefGoogle Scholar
  2. 2.
    B. Devauchelle, et al., First human face allograft: early report, Lancet 368(9531), 203–9 (2006).PubMedCrossRefGoogle Scholar
  3. 3.
    E. T. Ustuner, et al., Swine composite tissue allotransplant model for preclinical hand transplant studies, Microsurgery 20(8), 400–6 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    J. L. Gowans, G. D. Mc, and D. M. Cowen, Initiation of immune responses by small lymphocytes, Nature 196, 651–5 (1962).PubMedCrossRefGoogle Scholar
  5. 5.
    D. D. McGregor and J. L. Gowans, Survival of homografts of skin in rats depleted of lymphocytes by chronic drainage from the thoracic duct, Lancet 15, 629–32 (1964).CrossRefGoogle Scholar
  6. 6.
    E. M. Lance and P. B. Medawar, Survival of skin heterografts under treatment with antilymphocytic serum, Lancet 1(7553), 1174–6 (1968).PubMedCrossRefGoogle Scholar
  7. 7.
    E. M. Lance and P. Medawar, Quantitative studies on tissue transplantation immunity. IX. Induction of tolerance with antilymphocytic serum, Proc R Soc Lond B Biol Sci 173(33), 447–73 (1969).PubMedCrossRefGoogle Scholar
  8. 8.
    E. M.Lance and P. B. Medawar, Immunosuppressive effects of heterologous antilymphocyte serum in monkeys, Lancet 1(7639), 167–70 (1970).PubMedCrossRefGoogle Scholar
  9. 9.
    G. Kohler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256(5517), 495–7 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    S. P. Cobbold, et al., Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo, Nature 312(5994), 548–51 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Lanzetta, et al., The international registry on hand and composite tissue transplantation, Transplantation 79(9), 1210–4 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    D. M. Levi, et al., Transplantation of the abdominal wall, Lancet 361(9376), 2173–6 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    J. M. Gloor, et al., Overcoming a positive crossmatch in living-donor kidney transplantation, Am J Transplant 3(8), 1017–23 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Tyden, et al., ABO incompatible kidney transplantations without splenectomy, using antigen-specific immunoadsorption and rituximab, Am J Transplant 5(1), 145–8 (2005).PubMedCrossRefGoogle Scholar
  15. 15.
    B. Nashan, Antibody induction therapy in renal transplant patients receiving calcineurin-inhibitor immunosuppressive regimens: a comparative review, BioDrugs 19(1), 39–46 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Waldmann and G. Hale, CAMPATH: from concept to clinic, Philos Trans R Soc Lond B Biol Sci 360(1461), 1707–11 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Tanaka, et al., Correlation between the Banff 97 classification of renal allograft biopsies and clinical outcome, Transpl Int 17(2), 59–64 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    Y. T. Becker, et al., Rituximab as treatment for refractory kidney transplant rejection, Am J Transplant 4(6), 996–1001 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Alausa, et al., Refractory acute kidney transplant rejection with CD20 graft infiltrates and successful therapy with rituximab, Clin Transplant 19(1), 137–40 (2005).PubMedCrossRefGoogle Scholar
  20. 20.
    L. C. Cendales, et al., Composite tissue allotransplantation: classification of clinical acute skin rejection, Transplantation 80(12), 1676–80 (2005).PubMedGoogle Scholar
  21. 21.
    D. C. Brennan, et al., A randomized, double-blinded comparison of Thymoglobulin versus Atgam for induction immunosuppressive therapy in adult renal transplant recipients, Transplantation 67(7), 1011–8 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    A. O. Gaber, et al., Results of the double-blind, randomized, multicenter, phase III clinical trial of Thymoglobulin versus Atgam in the treatment of acute graft rejection episodes after renal transplantation, Transplantation 66(1), 29–37 (1998).PubMedCrossRefGoogle Scholar
  23. 23.
    K. L. Hardinger, et al., Five-year follow up of thymoglobulin versus ATGAM induction in adult renal transplantation, Transplantation 78(1), 136–41 (2004).PubMedCrossRefGoogle Scholar
  24. 24.
    Y. Lebranchu, et al., Immunoprophylaxis with basiliximab compared with antithymocyte globulin in renal transplant patients receiving MMF-containing triple therapy, Am J Transplant 2(1), 48–56 (2002).PubMedCrossRefGoogle Scholar
  25. 25.
    H. Sollinger, et al., Basiliximab versus antithymocyte globulin for prevention of acute renal allograft rejection, Transplantation 72(12), 1915–9 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Opelz and B. Dohler, Lymphomas after solid organ transplantation: a collaborative transplant study report, Am J Transplant 4(2), 222–30 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    R. L. Kirkman, et al., A randomized prospective trial of anti-Tac monoclonal antibody in human renal transplantation, Transplantation 51(1), 107–13 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    Ortho Multicenter Transplant Study Group, A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants, N Engl J Med 313(6), 337–42 (1985).Google Scholar
  29. 29.
    E. H. Cole, et al., A comparison of rabbit antithymocyte serum and OKT3 as prophylaxis against renal allograft rejection, Transplantation 57(1), 60–7 (1994).PubMedCrossRefGoogle Scholar
  30. 30.
    J. M. Grino, et al., Antilymphocyte globulin versus OKT3 induction therapy in cadaveric kidney transplantation: a prospective randomized study, Am J Kidney Dis 20(6), 603–10 (1992).PubMedGoogle Scholar
  31. 31.
    D. J. Norman, Mechanisms of action and overview of OKT3, Ther Drug Monit 17(6), 615–20 (1995).PubMedCrossRefGoogle Scholar
  32. 32.
    R. T. Bustami, et al., Immunosuppression and the risk of post-transplant malignancy among cadaveric first kidney transplant recipients, Am J Transplant 4(1), 87–93 (2004).PubMedCrossRefGoogle Scholar
  33. 33.
    D. Adu, et al., Interleukin-2 receptor monoclonal antibodies in renal transplantation: meta-analysis of randomised trials, BMJ 326(7393), 789 (2003).PubMedCrossRefGoogle Scholar
  34. 34.
    T. M. Chapman and G. M. Keating, Basiliximab: a review of its use as induction therapy in renal transplantation, Drugs 63(24), 803–35 (2003).CrossRefGoogle Scholar
  35. 35.
    B. Nashan, et al., Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group, Lancet 350(9086), 1193–8 (1997).PubMedCrossRefGoogle Scholar
  36. 36.
    C. Ponticelli, et al., A randomized, double-blind trial of basiliximab immunoprophylaxis plus riple therapy in kidney transplant recipients, Transplantation 72(7), 1261–7 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    G. Mourad, et al., Sequential protocols using basiliximab versus antithymocyte globulins in renal-transplant patients receiving mycophenolate mofetil and steroids, Transplantation 78(4), 584–90 (2004).PubMedCrossRefGoogle Scholar
  38. 38.
    F. Vincenti, et al., Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group, N Engl J Med 338(3), 161–5 (1998).PubMedCrossRefGoogle Scholar
  39. 39.
    A. C. Webster, et al., Interleukin 2 receptor antagonists for renal transplant recipients: a meta-analysis of randomized trials, Transplantation 77(2), 166–76 (2004).PubMedCrossRefGoogle Scholar
  40. 40.
    J. G. Lawen, et al., Randomized double-blind study of immunoprophylaxis with basiliximab, a chimeric anti-interleukin-2 receptor monoclonal antibody, in combination with mycophenolate mofetil-containing triple therapy in renal transplantation, Transplantation 75(1), 37–43 (2003).PubMedCrossRefGoogle Scholar
  41. 41.
    M. J. Keating, et al., Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study, Blood 99(10), 3554–61 (2002).PubMedCrossRefGoogle Scholar
  42. 42.
    E. L. Matteson, et al., Treatment of active refractory rheumatoid arthritis with humanized monoclonal antibody CAMPATH-1H administered by daily subcutaneous injection, Arthritis Rheum 38(9), 1187–93 (1995).PubMedCrossRefGoogle Scholar
  43. 43.
    J. D. Isaacs, et al., Monoclonal antibody therapy of diffuse cutaneous scleroderma with CAMPATH-1H, J Rheumatol 23(6), 1103–6 (1996).PubMedGoogle Scholar
  44. 44.
    T. Moreau, et al., Preliminary evidence from magnetic resonance imaging for reduction in disease activity after lymphocyte depletion in multiple sclerosis, Lancet 344(8918), 298–301 (1994).PubMedCrossRefGoogle Scholar
  45. 45.
    M. Q. Xia, et al., Characterization of the CAMPATH-1 (CDw52) antigen: biochemical analysis and cDNA cloning reveal an unusually small peptide backbone, Eur J Immunol 21(7), 1677–84 (1991).PubMedCrossRefGoogle Scholar
  46. 46.
    R. Calne, et al., Prope tolerance, perioperative campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients, Lancet 351(9117), 1701–2 (1998).PubMedCrossRefGoogle Scholar
  47. 47.
    R. Calne, et al., Campath IH allows low-dose cyclosporine monotherapy in 31 cadaveric renal allograft recipients, Transplantation 68(10), 1613–6 (1999).PubMedCrossRefGoogle Scholar
  48. 48.
    G. Ciancio, et al., The use of Campath-1H as induction therapy in renal transplantation: preliminary results, Transplantation 78(3), 426–33 (2004).PubMedCrossRefGoogle Scholar
  49. 49.
    A. D. Kirk, et al., Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H), Transplantation 76(1), 120–9 (2003).PubMedCrossRefGoogle Scholar
  50. 50.
    A. G. Tzakis, et al., Preliminary experience with alemtuzumab (Campath-1H) and low-dose tacrolimus immunosuppression in adult liver transplantation, Transplantation 77(8), 1209–14 (2004).PubMedCrossRefGoogle Scholar
  51. 51.
    C. J. Watson, et al., Alemtuzumab (CAMPATH 1H) induction therapy in cadaveric kidney transplantation – efficacy and safety at five years, Am J Transplant 5(6), 1347–53 (2005).PubMedCrossRefGoogle Scholar
  52. 52.
    S. K. Malek, et al., Campath-1H induction and the incidence of infectious complications in adult renal transplantation, Transplantation 81(1), 17–20 (2006).PubMedCrossRefGoogle Scholar
  53. 53.
    F. P. Silveira, et al., Bloodstream infections in organ transplant recipients receiving alemtuzumab: no evidence of occurrence of organisms typically associated with profound T cell depletion, J Infect 53(4), 241–7 (2006).PubMedCrossRefGoogle Scholar
  54. 54.
    A. J. Coles, et al., Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis, Lancet 354(9191), 1691–5 (1999).PubMedCrossRefGoogle Scholar
  55. 55.
    A. Paolillo, et al., Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H, Neurology 53(4), 751–7 (1999).PubMedGoogle Scholar
  56. 56.
    S. Schneeberger, et al., Steroid- and ATG-resistant rejection after double forearm transplantation responds to Campath-1H, Am J Transplant 4(8), 1372–4 (2004).PubMedCrossRefGoogle Scholar
  57. 57.
    A. G. Tzakis, et al., Alemtuzumab (Campath-1H) combined with tacrolimus in intestinal and multivisceral transplantation, Transplantation 75(9), 1512–7 (2003).PubMedCrossRefGoogle Scholar
  58. 58.
    B. Coiffier, et al., Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study, Blood 92(6), 1927–32 (1998).PubMedGoogle Scholar
  59. 59.
    D. G. Maloney, et al., Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma, Blood 84(8), 2457–66 (1994).PubMedGoogle Scholar
  60. 60.
    J. C. Edwards, M. J. Leandro, and G. Cambridge, B lymphocyte depletion therapy with rituximab in rheumatoid arthritis, Rheum Dis Clin North Am 30(2), 393–403, viii (2004).PubMedCrossRefGoogle Scholar
  61. 61.
    C. M. Ng, et al., Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial, J Clin Pharmacol 45(7), 792–801 (2005).PubMedCrossRefGoogle Scholar
  62. 62.
    J. H. Anolik, et al., The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus, Arthritis Rheum 48(2), 455–9 (2003).PubMedCrossRefGoogle Scholar
  63. 63.
    S. Norin, et al., Posttransplant lymphoma – a single-center experience of 500 liver transplantations, Med Oncol 21(3), 273–84 (2004).PubMedCrossRefGoogle Scholar
  64. 64.
    M. E. Reff, et al., Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20, Blood 83(2), 435–45 (1994).PubMedGoogle Scholar
  65. 65.
    L. M. Nadler, et al., A unique cell surface antigen identifying lymphoid malignancies of B cell origin, J Clin Invest 67(1), 134–40 (1981).PubMedCrossRefGoogle Scholar
  66. 66.
    M. Sarwal, et al., Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling, N Engl J Med 349(2), 125–38 (2003).PubMedCrossRefGoogle Scholar
  67. 67.
    J. M. Aranda, Jr., et al., Anti-CD20 monoclonal antibody (rituximab) therapy for acute cardiac humoral rejection: a case report, Transplantation 73(6), 907–10 (2002).PubMedCrossRefGoogle Scholar
  68. 68.
    H. E. Garrett, Jr., et al., Treatment of vascular rejection with rituximab in cardiac transplantation, J Heart Lung Transplant 24(9), 1337–42 (2005).PubMedCrossRefGoogle Scholar
  69. 69.
    I. C. Balfour, et al., Use of rituximab to decrease panel-reactive antibodies, J Heart Lung Transplant 24(5), 628–30 (2005).PubMedCrossRefGoogle Scholar
  70. 70.
    C. A. Vieira, et al., Rituximab for reduction of anti-HLA antibodies in patients awaiting renal transplantation: 1. Safety, pharmacodynamics, and pharmacokinetics, Transplantation 77(4), 542–8 (2004).PubMedCrossRefGoogle Scholar
  71. 71.
    T. Sawada, et al., Preconditioning regimen consisting of anti-CD20 monoclonal antibody infusions, splenectomy and DFPP-enabled non-responders to undergo ABO-incompatible kidney transplantation, Clin Transplant 18(3), 254–60 (2004).PubMedCrossRefGoogle Scholar
  72. 72.
    C. J. Sonnenday, et al., Plasmapheresis, CMV hyperimmune globulin, and anti-CD20 allow ABO-incompatible renal transplantation without splenectomy, Am J Transplant 4(8), 1315–22 (2004).PubMedCrossRefGoogle Scholar
  73. 73.
    M. Usuda, et al., Successful use of anti-CD20 monoclonal antibody (rituximab) for ABO-incompatible living-related liver transplantation, Transplantation 79(1), 12–6 (2005).PubMedCrossRefGoogle Scholar
  74. 74.
    A. Agarwal, et al., Rituximab, anti-CD20, induces in vivo cytokine release but does not impair ex vivo T-cell responses, Am J Transplant 4(8), 1357–60 (2004).PubMedCrossRefGoogle Scholar
  75. 75.
    Y. Tsutsumi, et al., Reactivation of hepatitis B virus with rituximab, Expert Opin Drug Saf 4(3), 599–608 (2005).PubMedCrossRefGoogle Scholar
  76. 76.
    R. H. Schwartz, A cell culture model for T lymphocyte clonal anergy, Science 248(4961), 1349–56.Google Scholar
  77. 77.
    L. Biancone, I. Deambrosis, and G. Camussi, Lymphocyte costimulatory receptors in renal disease and transplantation, J Nephrol 15(1), 7–16 (2002).PubMedGoogle Scholar
  78. 78.
    C. P. Larsen and T. C. Pearson, The CD40 pathway in allograft rejection, acceptance, and tolerance, Curr Opin Immunol 9(5), 641–7 (1997).PubMedCrossRefGoogle Scholar
  79. 79.
    H. Gudmundsdottir and L. A. Turka, T cell costimulatory blockade: new therapies for transplant rejection, J Am Soc Nephrol 10(6), 1356–65 (1999).PubMedGoogle Scholar
  80. 80.
    W. W. Hancock, et al., Costimulatory function and expression of CD40 ligand, CD80, and CD86 in vascularized murine cardiac allograft rejection, Proc Natl Acad Sci U S A 93(24), 13967–72 (1996).PubMedCrossRefGoogle Scholar
  81. 81.
    N. S. Kenyon, et al., Long-term survival and function of intrahepatic islet allografts in rhesus monkeys treated with humanized anti-CD154, Proc Natl Acad Sci U S A 96(14), 8132–7 (1999).PubMedCrossRefGoogle Scholar
  82. 82.
    A. D. Kirk, et al., Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates, Nat Med 5(6), 686–93 (1999).PubMedCrossRefGoogle Scholar
  83. 83.
    A. D. Kirk, et al., CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates, Proc Natl Acad Sci U S A 94(16), 8789–94 (1997).PubMedCrossRefGoogle Scholar
  84. 84.
    C. P. Larsen, et al., Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways, Nature 381(6581), 434–8 (1996).PubMedCrossRefGoogle Scholar
  85. 85.
    D. C. Parker, et al., Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand, Proc Natl Acad Sci U S A 92(21), 9560–4 (1995).PubMedCrossRefGoogle Scholar
  86. 86.
    T. Kanmaz, et al., Monotherapy with the novel human anti-CD154 monoclonal antibody ABI793 in rhesus monkey renal transplantation model, Transplantation 77(6), 914–20 (2004).PubMedCrossRefGoogle Scholar
  87. 87.
    E. H. Preston, et al., IDEC-131 (anti-CD154), sirolimus and donor-specific transfusion facilitate operational tolerance in non-human primates, Am J Transplant 5(5), 1032–41 (2005).PubMedCrossRefGoogle Scholar
  88. 88.
    A. B. Adams, et al., Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival, J Immunol 174(1), 542–50 (2005).PubMedGoogle Scholar
  89. 89.
    J. A. Gross, E. Callas, and J. P. Allison, Identification and distribution of the costimulatory receptor CD28 in the mouse, J Immunol 149(2), 380–8 (1992).PubMedGoogle Scholar
  90. 90.
    M. L. Alegre, K. A. Frauwirth, and C. B. Thompson, T-cell regulation by CD28 and CTLA-4, Nat Rev Immunol 1(3), 220–8 (2001).PubMedCrossRefGoogle Scholar
  91. 91.
    C. Orabona, et al., CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86, Nat Immunol 5(11), 1134–42 (2004).PubMedCrossRefGoogle Scholar
  92. 92.
    Q. Tang, et al., Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells, J Immunol 171(7), 3348–52 (2003).PubMedGoogle Scholar
  93. 93.
    A. J. McAdam, A. N. Schweitzer, and A. H. Sharpe, The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells, Immunol Rev 165, 231–47 (1998).PubMedCrossRefGoogle Scholar
  94. 94.
    T. C. Pearson, et al., Transplantation tolerance induced by CTLA4-Ig, Transplantation 57(12), 1701–6 (1994).PubMedGoogle Scholar
  95. 95.
    L. A. Turka, et al., T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo, Proc Natl Acad Sci U S A 89(22), 11102–5 (1992).PubMedCrossRefGoogle Scholar
  96. 96.
    T. Birsan, et al., Treatment with humanized monoclonal antibodies against CD80 and CD86 combined with sirolimus prolongs renal allograft survival in cynomolgus monkeys, Transplantation 75(12), 2106–13 (2003).PubMedCrossRefGoogle Scholar
  97. 97.
    A. D. Kirk, et al., Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates, Transplantation 72(3), 377–84 (2001).PubMedCrossRefGoogle Scholar
  98. 98.
    F. Vincenti, What’s in the pipeline? New immunosuppressive drugs in transplantation, Am J Transplant 2(10), 898–903 (2002).PubMedCrossRefGoogle Scholar
  99. 99.
    D. A. Mandelbrot, et al., Expression of B7 molecules in recipient, not donor, mice determines the survival of cardiac allografts, J Immunol 163(7), 3753–7 (1999).PubMedGoogle Scholar
  100. 100.
    G. L. Szot, et al., Absence of host B7 expression is sufficient for long-term murine vascularized heart allograft survival, Transplantation 69(5), 904–9 (2000).PubMedCrossRefGoogle Scholar
  101. 101.
    F. Haspot, et al., Anti-CD28 antibody-induced kidney allograft tolerance related to tryptophan degradation and TCR class II B7 regulatory cells, Am J Transplant 5(10), 2339–48 (2005).PubMedCrossRefGoogle Scholar
  102. 102.
    C. A. Chambers, M. S. Kuhns, and J. P. Allison, Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4(+) T cell responses, Proc Natl Acad Sci U S A 96(15), 8603–8 (1999).PubMedCrossRefGoogle Scholar
  103. 103.
    M. F. Krummel and J. P. Allison, CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation, J Exp Med 182(2), 459–65 (1999).CrossRefGoogle Scholar
  104. 104.
    D. H. Munn, M. D. Sharma, and A. L. Mellor, Ligation of B7–1/B7–2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells, J Immunol 172(7), 4100–10 (2004).PubMedGoogle Scholar
  105. 105.
    K. S. Kim, et al., CD28–B7-mediated T cell costimulation in chronic cardiac allograft rejection: differential role of B7–1 in initiation versus progression of graft arteriosclerosis, Am J Pathol 158(3), 977–86 (2001).PubMedGoogle Scholar
  106. 106.
    T. Pentcheva-Hoang, et al., B7–1 and B7–2 selectively recruit CTLA-4 and CD28 to the immunological synapse, Immunity 21(3), 401–13 (2004).PubMedCrossRefGoogle Scholar
  107. 107.
    H. Azuma, et al., Blockade of T-cell costimulation prevents development of experimental chronic renal allograft rejection, Proc Natl Acad Sci U S A 93(22), 12439–44 (1996).PubMedCrossRefGoogle Scholar
  108. 108.
    C. P. Larsen, et al., Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties, Am J Transplant 5(3), 443–53 (2005).PubMedCrossRefGoogle Scholar
  109. 109.
    F. Vincenti, et al., Costimulation blockade with belatacept in renal transplantation, N Engl J Med 353(8), 770–81 (2005).PubMedCrossRefGoogle Scholar
  110. 110.
    L. Graca, et al., Antibody-induced transplantation tolerance: the role of dominant regulation, Immunol Res 28(3), 181–91 (2003).PubMedCrossRefGoogle Scholar
  111. 111.
    H. Waldmann, et al., Therapeutic aspects of tolerance, Curr Opin Pharmacol 1(4), 392–7 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Dalibor Vasilic
    • 1
  • Moshe Kon
  • Cedric G. Francois
    • 2
  1. 1.University of LouisvilleLouisville
  2. 2.Department of Physiology & BiophysicsUniversity of LouisvilleLouisville

Personalised recommendations