Skip to main content

Tissue Engineering of Small– and Large– Diameter Blood Vessels

  • Chapter
  • First Online:
Strategies in Regenerative Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musclsckeletal tissue engineering. J Biomedic Mat Res 55:41–150

    Google Scholar 

  • Akers DL, Du YH, Kempczinski RF (1993) The effect of carbon coating and porosity on early patency of expanded polytetrafluoroethylene grafts: an experimental study. J Vasc Surg 18:10–15

    Article  CAS  Google Scholar 

  • Alimi Y, Juhan C, Morati N, girard N, Cohen S (1994) Dilatino of woven and knitted aortic prostic grafts: CT scan evaluation. Ann Vasc Surg 8:238–242

    Article  CAS  Google Scholar 

  • Armentano RL, Levenson J, Barra JG, Fischer Cabrera EI, Breitbart GJ, Pichel RH, Simon A (1991) Assessment of smooth muscle contribution to aortic elasticity in conscious dogs. Am J Physiol 260:H1870–1877

    Google Scholar 

  • Assmus, B, Schachinger, V, Teupe, et al. (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction. Circulation 106:3009–3017

    Article  Google Scholar 

  • Bacourt F (1997) Prospective randomized study of carbon-impregnated polytetrafluoroethylene grafts for below-knee popliteal and distal bypass, results at 3 years. Ann Vasc Surg 11:569–603

    Article  Google Scholar 

  • Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, Haverich A (1998) Tissue engineering of heart valves-human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14:279–284

    Article  CAS  Google Scholar 

  • Baguneid M, Murray D, Salacinski HJ, Fuller B, Hamilton G, Walker M et al. (2004) Shear stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Biotechnol Appl Biochem 39:151–157

    Article  CAS  Google Scholar 

  • Baguneid MS, Fulford PE, Walker MG (1999) Cardiovascular surgery in elderly. J R Coll Surg Edinb 44:216–221

    CAS  Google Scholar 

  • Bank AJ, Wang H, Holte JE, Mullen K, Shammas R, Kubo SH (1996) Contribution of collagen, elastin, and smooth muscle to in vivo human branchial artery wall stress and elastic modulus. Circulation 94:3263–3270

    Article  CAS  Google Scholar 

  • Barra JG, Armentano RL, Levenson J, Fischer Cabrera EI, Pichel RH, Simon A (1993) Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs. Circ Res 73:1040–1050

    Google Scholar 

  • Bassiouny HS, White S, Glagov S, Choi E, Giddens DP, Zarins CK (1992) Anastomotic intimal hyperplasia: mechanical injury or flow induced. J Vasc Surg 15:708–716

    Article  CAS  Google Scholar 

  • Batich C, DePalma D (1992) Materials used in breast implants: silicones and polyurethanes. J Long-term Effects Med Implants 1:255

    CAS  Google Scholar 

  • Bishopric NH, Dousman L, Yao Y-MM, inventors: St Jude Medical Inc, assignee (1999). Matrix substrate for a viable body tissue-derived prosthesis and method for making the same. St Paul, Minn: St Jude Inc.

    Google Scholar 

  • Blakemore AH, Vorhess AB (1952) The use of tubes constructed from Vinyon “N” cloth in bridging arterial defects. Experimental and clinical. Ann Surg 140:324–334

    Article  Google Scholar 

  • Cameron A, Davis KB, Green G, Scaff HV (1996) Coronary bypass surgery with internal-thoracic-artery grafts- effects on survival over a 15-year period. N Eng J Med 334:216–219

    Article  CAS  Google Scholar 

  • Clayson KR, Edwards WH, Allen TR, Dale WA (1976) Arm veins for peripheralarterial reconstruction. Arch Surg 111:1276–1280

    Article  CAS  Google Scholar 

  • Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ (1994) Development of a pericardial acellualr matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res 28:655–666

    Article  CAS  Google Scholar 

  • Cziperle DJ, Joyce KA, Tattersall CW, et al. (1992) Albumin impregnated vascular grafts: albumin resorption and tissue reactions. J Cardiovasc Surg 33:407–414

    CAS  Google Scholar 

  • Darling RC, Linton RR (1972) Durability of femoropopliteal reconstructions. Endarterytomy versus vein bypass grafts. Am J Surg 123:472–479

    Article  CAS  Google Scholar 

  • Davids L, Dower T, Zilla P (1999) The lack of healing in conventional vascular grafts. In Zilla P, Greisler HP, editors. Tissue engineering of vascular prosthetic grafts. Austin (Texas): R.G. Landes Company; p. 3–44.

    Google Scholar 

  • De Mol Van Otterloo JC, Van Bockel JH, Ponfoort ED, et al. (1991) Systemic effects of collagen-impregnated aortoiliac Dacron vasular prostheses on platelet activationand fibrin formation. J Vasc Surg 14:59–66

    Google Scholar 

  • Deterling RA, Bohnslay SB (1955) An evaluation of synthetic materials and fabrics suitable for blood vessel replacement. Surgery 38:71–89

    CAS  Google Scholar 

  • Deutsch M, Meinhart J, Fischlein T, Preiss P, Zilla P (1999) Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience. Surgery 126:847–855

    Article  CAS  Google Scholar 

  • Devine C, McCollum C (2001) Heparin-bounded Dacron or polytetrafluoroethylene for femoropopliteal bypass: a prospective randomized multicentre trial. J Vasc Surg 33:533–539

    Article  CAS  Google Scholar 

  • Donaladson MC, Mannick JA; Whittermore AD (1991) Femoral-distal bypass with in situ greater saphenous vein. Ann Surg 213:457–465

    Article  Google Scholar 

  • Eberhart A, Zhang Z, Guidoin R, Laroche G, Guay L, de La Faye D, Batt M, King MW (1999) A new generation of polyurethane vascular prosthese: rara avis or ignis fatuus? J Biomed Mater Res 48:546–458

    Article  CAS  Google Scholar 

  • Eyre D (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53:717–748

    Article  CAS  Google Scholar 

  • Frazza EJ, Schmitt EE (1991) A new absorbable suture. J Biomed Mater Res Symp 1:43–58

    Google Scholar 

  • Friedman SG, Lazzaro RS, Spier LN, Moccio c, Tortolani AJ (1995) A prospective randomized comparison of Dacron and polytetrafluoroethylene aortic bifurcation grafts. Surgery 117:7–10

    Article  CAS  Google Scholar 

  • Friedman SG, Lazzoro RS, Spier LN, Moccio C, Tortolani AJ (1994) A prospective randomized comparison of Dacron and polytetrafluoroethylene aortic bifurcation grafts. Surgery 117:7–10

    Article  Google Scholar 

  • Friedmann DW, Orland PJ, Greco RS (1994) Biomaterials: a historical perspective. In Ralph S. Greco, editor. Implantation biology: the host response and biochemedical devices. Baco raton (Fla): CRC press. p 1–14.

    Google Scholar 

  • Geesin JC, Darr D, Kaufman R, Murad S, Pinnel SR (1988) Ascorbic acid specifically increases type I and III procollagen messenger RNA levels in human skin fibroblasts. J Invest Dermatol 90:429–424

    Article  Google Scholar 

  • Girton TS, Oegma TR, Grassl ED, Isenberg BC, Tranquillo RT (2000) Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J Biomed Eng 122:216–223

    CAS  Google Scholar 

  • Glickman MH, Stokes GK, Ross JR, Schuman ED, Sternbergh WC 3rd, Lindberg JS, Money SM, Lorber MI (2001) Multicenter evaluation of a polytetrafluoroethylene vascular access graft in hemodialysis applications. J Vasc Surg 34:465–472

    Article  CAS  Google Scholar 

  • Green RM, Abbott WM, Matsumoto T, Wheeler JR, Miller N, Veith FJ, Money S, Garrett HE (2000) Prosthetic above-knee femoraopopliteal bypass grafting:five-year results of a randomized trial. J Vasc Surg 31:417–425

    Article  CAS  Google Scholar 

  • Greisler HP (1995) Characteristics and healing of vascular grafts. In: Callow AD, Ernst CB, (eds). Vascular surgery: theory and practice. Appleton & Lange, Stamford (Conn), p. 1181–1212

    Google Scholar 

  • Greisler HP (1990) Interactions at blood/material interface. Ann Vasc Surg 4:98–103

    Article  CAS  Google Scholar 

  • Herring M, Gardener A, Glover J (1978) A single-staged technique for seeding vascular grafts with autologenous endothelium. Surgery 84:498–504

    CAS  Google Scholar 

  • Hess F (1985) History of (micro) vascular surgery and the development of small-caliber blood vessel prothesies (with some notes on patency rates and re-endothelialization). Micro-surgery 6:59–69

    Article  CAS  Google Scholar 

  • Hoerstrup SP, Cumming I, Lachat M, Schoen FJ, Jenni R, Leschka S, Neuenschwander S, Schmidt D, Mol A, Gunter C, Gossi M, Genoni M, Zund G (2006) Functional growth in tissue engineered vascular grafts: follow-up in a large animal model. Circulation 114:159–66

    Article  Google Scholar 

  • Hoerstrup SP, Kadner A, Breymann C, Maurus CF, Guenter CI, Sodian R, Visjager JF, Zund G, Turina MI (2002) Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. Ann Thorac Surg 74:46–52

    Article  Google Scholar 

  • Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI (2001) Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg 20:164–169

    Article  CAS  Google Scholar 

  • Hufnagel CA (1947) Permanent intubation of the thoracic aorta. Arch Surg 54:382–389

    Article  CAS  Google Scholar 

  • Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S (1999) Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 17:1083–1086

    Article  CAS  Google Scholar 

  • Jarrell BE, Williams SK, Stokes G, Hubbard FA, Carabasi RA, Koolpe E, Greener D, Pratt K, Moritz MJ, Radomski J (1986) Use of freshly isolated capillary endothelial cells for the immediate establishment of monolayer on a vascular graft at aurgery. Surgery 100:392–399

    CAS  Google Scholar 

  • Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, Beeche M, Bodnar AG, Wahl GM, Tlsty TD, Chiu CP (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet 21:111–114

    Article  CAS  Google Scholar 

  • Johnson DJ, Robson P, Hew Y, Keeley FW (1995) Decreased elastin synthesis in normal development and in long-term aortic organ and cell cultures is related to rapid and selective destabilization of mRNA for elastin. Circ Res 77:1107–1113

    Article  CAS  Google Scholar 

  • Jonas RA, Ziemer G, Schoen FJ, Britton L, Castaneda AR (1988) A new sealant for knitted Dacron prostheses: minimal cross-linked gelatine. J Cardiovasc Surg 7:414–419

    CAS  Google Scholar 

  • Kadner A, Hoerstrup SP, Tracy J, Breymann C, Maurus CF, Melnitchouk S, Kadner G, Zund G, Turina M (2002) Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg 74:1422–1428

    Article  Google Scholar 

  • Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM (2005) Current status of prostethic bypass grafts:a review. J Biomed Mater Res Appl Biomater 74:570–581

    Google Scholar 

  • Kaushal S, Amiel GE, Guleserian KJ, et al. (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded in vivo. Nat Med 7:1035–1040

    Article  CAS  Google Scholar 

  • Kawamoto A, Gwon HC, Iwaguro, H (2002) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637

    Article  Google Scholar 

  • Kim BS, Nikolovski J, Bonadio J, Smiley E, Mooney DJ (1999) Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp Cell Res 251:318–328

    Article  CAS  Google Scholar 

  • Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularisation of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  CAS  Google Scholar 

  • Kohler TR, Stratton JR, Kirkman TR, Johansen KH, Zierler BK, Clowes AW (1992) Conventional versus high-porosity polytetrafluoroethylene grafts: clinical evaluation. Surgery 112:901–907

    CAS  Google Scholar 

  • Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK (2004) Tissue engineering: creation of long-lasting blood vessels. Nature 1:138–139

    Article  CAS  Google Scholar 

  • L'Heureux N, Stoclet JC, Auger FA, Lagaud GJL, Germain L, Andriantsitohaina R (2001) A human tissue-engineered vascular model for pharmacological studies of contractile responses, FASEB 15:515–524

    Article  CAS  Google Scholar 

  • L'Heureux N, Paquet S, Labbe R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47–56

    Google Scholar 

  • L'Heureux N, Dussere N, Koenig G, Victor B, Keire P, Wight TN, Chronos NA, Kyles AE, Gregory CR, Hoyt G, Robbins R, McAllister TN (2006) Human tissue-engineered blood vessles for adult arterial revascularization. Nat Med 12:361–365

    Article  CAS  Google Scholar 

  • Lambert AW, Fox AD, Williams DJ, Hoorocks M, Budd JS (1999) Experience with heparin-bounded collagen-coated grafts for infrainguinal bypass. Cardiovasc Surg 7:491–7494

    Article  CAS  Google Scholar 

  • Lantz GC, Badylak SF, Hiles MC, Coffey AC, Geddes LA, Kokini K et al. (1993) Small intestinal submucosa as a vascular graft: a review. J Invest Surg 6:297–310

    Article  CAS  Google Scholar 

  • Leung DY, Glagov S, Mathews MB (1979) Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191:475–477

    Article  Google Scholar 

  • Livesly SA, del campo AA, Nag A, Nichols KB, Coleman C, inventors; LifeCell Corp, assignee. Method processing and preserving collagen-based tissues for transplantation. US patent 5 336 616. Branchburg, NJ; LifeCell Corp; 1994.

    Google Scholar 

  • Matsumura G, Miyagawa-Tomita S, Shin'oka T, Ikada Y, Kurosawa H (2003) First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108:1729–1734

    Article  Google Scholar 

  • McMahon MP, Faris B, Wolfe BL, Brown KE, Pratt CA, Toselli P, Franzblau C (1985) Aging effects on the elastin composition in the extracellualr matrix of cultured rat aortic smooth muscle cells. In Vitro Cell Dev Biol 21:674–680

    Article  CAS  Google Scholar 

  • Mertens RA, Ohara PJ, Hertzer NR, Krajewski LP, Beven EG (1995) Surgical management of infrainguinal arterial prosthetic graft infections: review of a thirty-five-year experience. J Vasc Surg 21:782–791

    Article  CAS  Google Scholar 

  • Mitchell SL, Niklason LE (2003) Requirements for growing tissue-engineered vascular grafts. Cardiovasc Pathol 23:59–64

    Article  CAS  Google Scholar 

  • Miwa H, Matsuda T (1994) An integrate approach to the design and engineering of hybrid arterial prostheses. J Vasc Surg 19:658–667

    Article  CAS  Google Scholar 

  • Mol A, Bouten CV, Zund G, Gunter CI, Visjager JF, turina MI, Baaijens FP, Hoerstrup SP (2003) The relevance of large strains in functional tissue engineering of heart valves. Thorac Cardiovasc Surg 51:78–83

    Article  CAS  Google Scholar 

  • Mooney DJ, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP, Langer R (1996) Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials 17:115–124

    Article  CAS  Google Scholar 

  • Moore HD (1950) The replacement of blood vessels by polyethylene tubes. Surg Gynecol Obstet 91:593–600

    CAS  Google Scholar 

  • Niklason LE, Abbott W, Gao J, Klagges B, Hirschi KK, Ulubayram K, Conroy N, Jones R, Vasanawala A, Sanzgiri S, Langer R (2001) Morphologic and mechanical characteristics of engineered bovine arteries. J Vasc Surg 33:628–638

    Article  CAS  Google Scholar 

  • Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  CAS  Google Scholar 

  • Noishiki Y, Tomizawa Y, Yamane Y, Matsumoto A (1996) Autocrine angiogenic vascular prosthesis with bone marrow transplantation. Nat Med 2:32–34

    Article  Google Scholar 

  • Pesce M, Orlandi A, Iacchininoto MG, Straino S, Torella AR, Rizzati V, Pompilio G, Scambia G, Caporossi MC (2003) Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 93:e51–62

    Article  CAS  Google Scholar 

  • Poh M, Boyer A, Dahl SLM, Pedrotty D, Banik SSR, McKee JA, Klinger RY, Counter CM, Niklason LE (2005) Blood vessels engineered from human cells. Lancet 365:2122–2224

    Article  Google Scholar 

  • Post S, Kraus T, Mueller-Reinartz U, Weiss C, Kortmann H, Quentenmeier A, Winkler M, Husfeldt KJ, Allenberg JR (2001) Dacron vs polytetrafluoroethylene grafts for femoropoplieal bypass: a prospective randomized multicentre trial. Eur J Vasc Endovasc Surg 22:226–231

    Article  CAS  Google Scholar 

  • Prager M, Polterauer P, Böhmig HJ, Wagner O, Fugl A, Kretschmer G, Plohner M, Nanobasvilli J, Huk I (2001) Collagen versus gelatine-coated Dacron versus stretch polytetrafluoroethylene in abdominal aortic bifurcation graft surgery: results of a seven-year prospective, randomized multicenter trial. Surgery 130:408–414

    Article  CAS  Google Scholar 

  • Raja SG, Haider Z, Ahmad M, Zaman H (2004) Saphenous vein grafts: to use or not to use? Heart Lung Circ 13:403–409

    Article  Google Scholar 

  • Ratcliffe A (2000) Tissue engineering of vascular grafts. Matrix Biol 19:658–667

    Article  Google Scholar 

  • Rayton JK, Harris ED (1979) Induction of lysyl oxidase with copper. J Biol Chem 254:621–626

    CAS  Google Scholar 

  • Rosenberg N, Martinez A, Sawyer PN, Wesolowski SA, Postlethwait RW, Dillon ML Jr. (1966) Tanned collagen arterial prosthesis of bovine carotid origin in man. Preliminary studies of enzyme-treated heterografts. Ann Surg 164:247–256

    Article  CAS  Google Scholar 

  • Salacinski HJ, Punshon G, Krijgsman B, Hamilton G, Seifalian AM (2001) A hybrid compliant vascular graft seeded with microvascular endothelial cells extracted from human omentum. Artif Organs 25:974–982

    Article  CAS  Google Scholar 

  • Schmidt D, Asmis LM, Odermatt B, Kelm J, Breymann C, Gössi M, Genoni M, Zund G, Hoerstrup SP (2006) Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors. Ann Thorac Surg 82:1465–1471

    Article  Google Scholar 

  • Schmidt D, Breymann C, Weber A, Guenter CI, Neuenschwander S, Zund G, Turina M, Hoerstrup SP (2004) Umbilical cord blood derived endothelial progenitor cells for tissue engineering of Vascular Grafts. Ann Thorac Surg 78:2094–98

    Article  Google Scholar 

  • Schmidt D, Mol A, Breymann C, Achermann J, Odermatt B, Gössi M, Neuenschwander S, Prêtre R, Genoni M, Zund G, Hoerstrup SP (2006) Living autologous heart valve engineered from human prenatally harvested progenitors. Circulation 114:I125–131

    Article  Google Scholar 

  • Schmidt SP, Hunter TJ, Sharp WV, Malindzak GS, Evancho MM (1984) Endothelial cells seeded four millimetre Dacron vascular grafts. J Vasc Surg 1:434–441

    CAS  Google Scholar 

  • Scott SM, Gaddy LR, Sahmel R, Hoffmann H (1987) A collagen coated vascular prosthesis. J Cardiovasc Surg (Torino) 28:498–504

    CAS  Google Scholar 

  • Seifalian AM, Tiwari A, Hamilton G, Salacinski HJ (2002) Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs 26:307–320

    Article  Google Scholar 

  • Shanley CJ, Gharee-Kermani M, Sarkar R, Welling TH, Kriegel A, Ford JW, Stanley JC, Phan SH (1997) Transforming growth factor-β1 increases lysyl oxidase enzyme activity and mRNA in rat aortic smooth muscle cells. J Vasc Surg 25:446–452

    Article  CAS  Google Scholar 

  • Shin'oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Eng J Med 344:532–533

    Article  Google Scholar 

  • Shin'oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129:1330–1338

    Article  Google Scholar 

  • Shirota T, Hongbing HE, Yasui H, Matsuda T (2003) Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng 9:127–136

    Article  CAS  Google Scholar 

  • Shirota T, Yasui H, Shimokawa H, Matsuda T (2003) Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterial 24:2295–302

    Article  CAS  Google Scholar 

  • Shum-Tim D, Stock U Hrkach J, Shinoka T, Lien J, Moses MA, Stamp A, Taylor G, Moran AM, Landis W, Langer R, Vacanti JP, Mayer JE Jr. (1999) Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 68:2298–2305

    Google Scholar 

  • Simon P, Kasimir MT, Seebacher G et al. (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23:1002–1006

    Article  CAS  Google Scholar 

  • Sipehia R, Martucci G, Lipscombe J (1996) Enhanced attachment and growth of human endothelial cells derived from umbilical veins on ammonia plasma modified surfaces of PTFE and ePTFE synthetic vascular graft biomaterials. Artif Cells Blood Substit Immobil Biotechnol 24:51–63

    Article  CAS  Google Scholar 

  • Tanzi MC, Fare S, Petrini P (2000) In vitro stability of polyether and polycarbonate urethanes. J Biomater Appl 14:325–348

    Article  CAS  Google Scholar 

  • Taylor LM Jr, Edwards JM; Porter JM (1990) Present status of reserved vein bypass grafting: five-years results of a modern series. J Vasc Surg 11:193–205

    Google Scholar 

  • Teebeken OE, Haverich A (2002) Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg 12:59–64

    Google Scholar 

  • Tsuchida H, Cameron BL, Marcus CS, Wilson SE (1992) Modifies polytetrafluoroethylene: indium 111-labeled platelet deposition on carbon.lined and high porosity polytetrafluoroethylene grafts. J Vasc Surg 16:643–649

    Article  CAS  Google Scholar 

  • Varga J, Rosenbloom J, Jimenz SA (1987) Transforming growth factor β (TGFβ) causes a persistent increase in steady-state amounts of type I and type III collagen and fibrinectin mRNAs in normal human dermal fibroblasts. Biochem J 247:597–604

    CAS  Google Scholar 

  • Veith FJ, Moss CM, Sprayregen S, Montefusco C (1979) Preoperative saphenous venography in arterial reconstructive surgery of the lower extremity. Surgery 85:253–256

    CAS  Google Scholar 

  • Vorhess ABJ, Jaretzki AI, Blakemore AH (1952) The use of tubes constructed from Vinyon “N” cloth in bridging arterial defects. A preliminary report. Ann Surg 135:332–336

    Article  Google Scholar 

  • Vroman L, Adams AL (1969) Identification of rapid changes at plasma-solid interfaces. J Biomed Mater Res 3:43–67

    Article  CAS  Google Scholar 

  • Wake MC, Gupta PK, Mikos AG (1996) Fabrication of pliable biodegradable polymer foams to engineer soft tissues. Cell Transplant 5:465–473

    Article  CAS  Google Scholar 

  • Watanabe M, Shin'oka T, Tohyama S, Hibino N, Konuma T, Matsumura G, Kosaka Y, Ishida T, Imai Y, Yamakawa M, Ikada Y, Morita S (2001) Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng 7:429–439

    Article  CAS  Google Scholar 

  • Weinberg CB and Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    Article  CAS  Google Scholar 

  • Williams SK, Rose DG, Jarrell BE (1994) Microvascular endothelial cell seeding of ePTFE vascular grafts: improved patency and stability of the cellular lining. J Biomed Mat Res 28:203–212

    Article  CAS  Google Scholar 

  • Xue L, Greisler HP (2000) Blood vessels. In: Lanza RP, Langer R, Vacanti J, editors. Principle of tissue engineering 2nd edition.Academic Press, San Diego (Calif), p. 427–446

    Chapter  Google Scholar 

  • Ye Q, Zund G, Jockenhoevel S, Hoerstrup SP, Schoeberlein A, Grunenfelder J, Turina M (2000) Tissue engineering in cardiovascular surgery: new approach to develop completely human autologous tissue. Eur J Cardiothorac Surg 17:449–454

    Article  CAS  Google Scholar 

  • Zhang Z, Marois Y, Guidoin RG, Bull P, Marois M, How T, Laroche G, King MW (1997) Vasculgraft polyurethane arterial prosthesis as femorao-peroneal bypass in humans: pathological, structural and chemical analyses of four excised grafts. Biomaterials 18:113–124

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dörthe Schmidt .

Editor information

Editors and Affiliations

Additional information

Questions/Exercises

  1. 1.

    Which are the two natural grafts used in bypass applications? What are their tissues of origin, how well do they match the vessel to be replaced, and how do they perform in clinics?

  2. 2.

    What are the main polymeric biomaterials used for synthetic graft manufacture and the principal method of engineering? Describe their biocompatibility and clinical performance in the light of their physico-chemical properties.

  3. 3.

    Describe the ideal properties of a vascular graft and compare them with the features of a typical, commercially available device.

  4. 4.

    Critically analyze two main tissue engineering approaches for small-diameter blood vessel regeneration.

  5. 5.

    Which are the main cell types to be used in the assembling of a tissue engineering construct for vessel replacement?

  6. 6.

    Name the main sources of stem cells for tissue engineering of blood vessels and analyze advantages and disadvantages in their use.

  7. 7.

    What are the biomolecular bases of the blood vessel mechanical properties? Can they be reproduced by synthetic grafts and tissue engineering constructs?

  8. 8.

    Give an example of a bioreactor system for tissue engineering of blood vessel. Describe the biomaterial, cell, and environmental conditions used and the rationale underpinning their choice.

  9. 9.

    What are the principal animal models employed for the in vivo assessment of blood vessel grafts and tissue engineering constructs?

  10. 10.

    Provide an overview of the clinical experience for blood vessel tissue engineering and compare it with the performance of traditional grafts and bypasses.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, D., Hoerstrup, S.P. (2009). Tissue Engineering of Small– and Large– Diameter Blood Vessels. In: Santin, M. (eds) Strategies in Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74660-9_7

Download citation

Publish with us

Policies and ethics