Skip to main content

Biomimetic and Bio-responsive Materials in Regenerative Medicine

Intelligent Materials for Healing Living Tissues

  • Chapter
  • First Online:
Strategies in Regenerative Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott A (2003) Cell culture: biology's new dimension. Nature 424:870–872

    Article  CAS  Google Scholar 

  • Alenghat FJ, Ingber DE (2002) Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002:PE6

    Google Scholar 

  • Anseth KS, Metters AT, Bryant SJ, et al. (2002) In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release 78:199–209

    Article  CAS  Google Scholar 

  • Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci. 6:623–633

    Article  CAS  Google Scholar 

  • Barber TA, Golledge SL, Castner DG et al. (2003) Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro. J Biomed Mater Res A 64:38–47

    Article  CAS  Google Scholar 

  • Bearinger JP, Castner DG, Healy KE (1998) Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypic expression. J Biomater Sci Polym Ed 9:629–652

    Article  CAS  Google Scholar 

  • Behravesh E, Zygourakis K, Mikos AG (2003) Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide. J Biomed Mater Res A 65:260–270

    Article  CAS  Google Scholar 

  • Bhattarai N, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermoreversible hydrogel. Macromol Biosci 5:107–111

    Article  CAS  Google Scholar 

  • Brandley BK, Schnaar RL (1988) Covalent attachment of an Arg-Gly-Asp sequence peptide to derivatizable polyacrylamide surfaces: support of fibroblast adhesion and long-term growth. Anal Biochem 172:270–278

    Article  CAS  Google Scholar 

  • Burdick JA, Anseth KS (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 22:4315–4323

    Article  Google Scholar 

  • Cai S, Liu Y, Zheng Shu X, et al. (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26:6054–6067

    Article  CAS  Google Scholar 

  • Cellesi F, Tirelli N (2005) A new process for cell microencapsulation and other biomaterial applications: Thermal gelation and chemical cross-linking in “tandem”. J Mater Sci Mater Med 16:559–565

    Article  CAS  Google Scholar 

  • Chaikof EL, Matthew H, Kohn J, et al.(2002) Biomaterials and scaffolds in reparative medicine. Ann N Y Acad Sci 961:96–105

    Article  CAS  Google Scholar 

  • Chen JS, Noah EM, Pallua N, et al. (2002) The use of bifunctional polyethyleneglycol derivatives for coupling of proteins to and cross-linking of collagen matrices. J Mater Sci Mater Med 13:1029–1035

    Article  CAS  Google Scholar 

  • Chung EH, Gilbert M, Virdi AS, et al. (2006) Biomimetic artificial ECMs stimulate bone regeneration. J Biomed Mater Res A 79A:815–826

    Article  CAS  Google Scholar 

  • Cutler SM, Garcia AJ (2003) Engineering cell adhesive surfaces that direct integrin α5β1 binding using a recombinant fragment of fibronectin. Biomaterials May 24:1759–1770

    Article  CAS  Google Scholar 

  • Davis ME, Hsieh PC, Takahashi T, et al. (2006) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A 103:8155–8160

    Google Scholar 

  • de Las Heras Alarcon C, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285

    Article  CAS  Google Scholar 

  • Dee KC, Andersen TT, Bizios R (1998) Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J Biomed Mater Res 40:371–377

    Article  CAS  Google Scholar 

  • DeLong SA, Gobin AS, West JL (2005) Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J Control Release 109:139–148

    Article  CAS  Google Scholar 

  • DeLong SA, Moon JJ, West JL (2005) Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26:3227–3234

    Article  CAS  Google Scholar 

  • Dettin M, Conconi MT, Gambaretto R, et al. (2005) Effect of synthetic peptides on osteoblast adhesion. Biomaterials 26:4507–4515

    Article  CAS  Google Scholar 

  • Dikovsky D, Bianco-Peled H, Seliktar D (2006) The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials 27:1496–1506

    Article  CAS  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  CAS  Google Scholar 

  • Drotleff S, Lungwitz U, Breunig M, et al. (2004) Biomimetic polymers in pharmaceutical and biomedical sciences. Eur J Pharm Biopharm 58:385–407

    Article  CAS  Google Scholar 

  • Drumheller PD, Hubbell JA. (1994) Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrates. Anal Biochem 222:380–388

    Article  CAS  Google Scholar 

  • Ehrbar M, Djonov VG, Schnell C, et al. (2004) Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94:1124–1132

    Article  CAS  Google Scholar 

  • Ehrbar M, Metters A, Zammaretti P, et al. (2005) Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 101:93–109

    Article  CAS  Google Scholar 

  • Elbert DL, Hubbell JA (2001) Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2:430–441

    Article  CAS  Google Scholar 

  • Elbert DL, Pratt AB, Lutolf MP, et al. (2001) Protein delivery from materials formed by self-selective conjugate addition reactions. J Control Release 76:11–25

    Article  CAS  Google Scholar 

  • Engler A, Bacakova L, Newman C, et al. (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86:617–628

    Article  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, et al. (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  Google Scholar 

  • Fisher JP, Jo S, Mikos AG, et al. (2004) Thermoreversible hydrogel scaffolds for articular cartilage engineering. J Biomed Mater Res A 71:268–274

    Article  CAS  Google Scholar 

  • Forget MA, Desrosiers RR, Beliveau R (1999) Physiological roles of matrix metalloproteinases: implications for tumor growth and metastasis. Can J Physiol Pharmacol 77:465–480

    Article  CAS  Google Scholar 

  • Fujita M, Ishihara M, Morimoto Y, et al. (2005) Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction. J Surg Res 126:27–33

    Article  CAS  Google Scholar 

  • Gallant ND, García AJ (2007) Quantitative analysis of cell adhesion strength. Methods Mol Biol 370:83–96

    Google Scholar 

  • Garcia AJ, Boettiger D (1999) Integrin-fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials 20:2427–243

    Article  CAS  Google Scholar 

  • Geer DJ, Swartz DD, Andreadis ST (2005) Biomimetic delivery of keratinocyte growth factor upon cellular demand for accelerated wound healing in vitro and in vivo. Am J Pathol 167:1575–1586

    Article  CAS  Google Scholar 

  • Ghosh K, Ren XD, Shu XZ, et al. (2006) Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 12:601–613

    Article  CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    Article  CAS  Google Scholar 

  • Gilbert M, Giachelli CM, Stayton PS (2003) Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces. J Biomed Mater Res A 67:69–77

    Article  CAS  Google Scholar 

  • Gilbert ME, Kirker KR, Gray SD, et al. (2004) Chondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. Laryngoscope 114:1406–1409

    Article  CAS  Google Scholar 

  • Girotti A, Reguera J, Rodriguez-Cabello JC, et al. (2004) Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J Mater Sci Mater Med 15:479–484

    Article  CAS  Google Scholar 

  • Gobin AS, West JL (2002) Cell migration through defined, synthetic ECM analogs. Faseb J 16:751–753

    CAS  Google Scholar 

  • Gobin AS, West JL (2003) Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels. Biotechnol Prog. 19:1781–1785

    Article  CAS  Google Scholar 

  • Gobin AS, West JL (2003) Val-ala-pro-gly, an elastin-derived non-integrin ligand: smooth muscle cell adhesion and specificity. J Biomed Mater Res A 67:255–259

    Article  CAS  Google Scholar 

  • Gonzalez AL, Gobin AS, West JL, et al. (2006) Integrin interactions with immobilized peptides in polyethylene glycol diacrylate hydrogels. Tissue Eng 10:1775–1786

    Article  Google Scholar 

  • Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  CAS  Google Scholar 

  • Guler MO, Hsu L, Soukasene S, et al. (2006) Presentation of RGDS epitopes on self-assembled nanofibers of branched peptide amphiphiles. Biomacromolecules. 7:1855–1863

    Article  CAS  Google Scholar 

  • Halstenberg S, Panitch A, Rizzi S, et al. (2002) Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3:710–723

    Article  CAS  Google Scholar 

  • Harbers GM, Gamble LJ, Irwin EF, et al. (2005) Development and characterization of a high-throughput system for assessing cell-surface receptor-ligand engagement. Langmuir 21:8374–8384

    Article  CAS  Google Scholar 

  • Harbers GM, Healy KE (2005) The effect of ligand type and density on osteoblast adhesion, proliferation, and matrix mineralization. J Biomed Mater Res A 75:855–869

    Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A 99:5133–5138

    Google Scholar 

  • Healy KE, Rezania A, Stile RA (1999) Designing biomaterials to direct biological responses. Bioartificial Organs Ii: Technology, Medicine, and Materials 875:24–35

    CAS  Google Scholar 

  • Heilshorn SC, DiZio KA, Welsh ER, et al. (2003) Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomaterials 24:4245–4252

    Article  CAS  Google Scholar 

  • Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39:266–276

    Article  CAS  Google Scholar 

  • Hertl W, Ramsey WS, Nowlan ED (1984) Assessment of cell-substrate adhesion by a centrifugal method. In Vitro 20:796–801

    Article  CAS  Google Scholar 

  • Hirano Y, Kando Y, Hayashi T, et al. (1991) Synthesis and cell attachment activity of bioactive oligopeptides: RGD, RGDS, RGDV, and RGDT. J Biomed Mater Res 25:1523–1534

    Article  CAS  Google Scholar 

  • Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101:111–125

    Article  CAS  Google Scholar 

  • Hoshikawa A, Nakayama Y, Matsuda T, et al. (2006) Encapsulation of chondrocytes in photopolymerizable styrenated gelatin for cartilage tissue engineering. Tissue Eng. 12:2333–2341

    Article  CAS  Google Scholar 

  • Hosseinkhani H, Hosseinkhani M, Khademhosseini A, et al. (2006) Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials 27:5836–5844

    Article  CAS  Google Scholar 

  • Hsieh PC, Davis ME, Gannon J, et al. (2006) Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 116:237–248

    Article  CAS  Google Scholar 

  • Hsieh PC, MacGillivray C, Gannon J, et al. (2006) Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation 114:637–644

    Article  CAS  Google Scholar 

  • Hubbell JA (2004) Biomaterials science and high-throughput screening. Nat Biotechnol 22:828–829

    Article  CAS  Google Scholar 

  • Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119:3901–3903

    Article  CAS  Google Scholar 

  • Hutchings H, Ortega N, Plouet J (2003) Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. Faseb J 17:1520–1522

    CAS  Google Scholar 

  • Irvine DJ, Mayes AM, Griffith LG (2001) Nanoscale clustering of RGD peptides at surfaces using Comb polymers. 1. Synthesis and characterization of Comb thin films. Biomacromolecules 2:85–94

    Article  CAS  Google Scholar 

  • Itle LJ, Koh WG, Pishko MV (2005) Hepatocyte viability and protein expression within hydrogel microstructures. Biotechnol Prog 21:926–932

    Article  CAS  Google Scholar 

  • Jiang XS, Chai C, Zhang Y, et al. (2006) Surface-immobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34+ cells. Biomaterials 27:2723–2732

    Article  CAS  Google Scholar 

  • Jo S, Shin H, Mikos AG (2001) Modification of oligo(poly(ethylene glycol) fumarate) macromer with a GRGD peptide for the preparation of functionalized polymer networks. Biomacromolecules 2:255–261

    Article  CAS  Google Scholar 

  • Kao WJ, Lee D, Schense JC, et al. (2001) Fibronectin modulates macrophage adhesion and FBGC formation: the role of RGD, PHSRN, and PRRARV domains. J Biomed Mater Res 55:79–88

    Article  CAS  Google Scholar 

  • Kim S, Chung EH, Gilbert M, et al. (2005) Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J Biomed Mater Res A 75:73–88

    Google Scholar 

  • Kim S, Healy KE (2003) Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules. 4:1214–1223

    Article  CAS  Google Scholar 

  • Kirker KR, Luo Y, Nielson JH, et al. (2002) Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials 23:3661–3671

    Article  CAS  Google Scholar 

  • Kleiner DE, Stetler-Stevenson WG (1999) Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 43:S42–51

    Article  CAS  Google Scholar 

  • Koch S, Yao C, Grieb G, et al. (2006) Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci Mater Med 17:735–741

    Article  CAS  Google Scholar 

  • Koo LY, Irvine DJ, Mayes AM, et al. (2002) Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 115:1423–1433

    CAS  Google Scholar 

  • Kopecek J (2003) Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Sci 20:1–16

    Article  CAS  Google Scholar 

  • Lai PH, Chang Y, Chen SC, et al. (2006) Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration. Tissue Eng 12:2499–2508

    Article  CAS  Google Scholar 

  • Leach JB, Bivens KA, Collins CN, et al. (2004) Development of photocrosslinkable hyaluronic acid-polyethylene glycol-peptide composite hydrogels for soft tissue engineering. J Biomed Mater Res A 70:74–82

    Article  CAS  Google Scholar 

  • Lee BH, West B, McLemore R, et al. (2006) In-situ injectable physically and chemically gelling NIPAAm-based copolymer system for embolization. Biomacromolecules. 7:2059–2064

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  Google Scholar 

  • Lee MH, Murphy G (2004) Matrix metalloproteinases at a glance. J Cell Sci 117:4015–4016

    Article  CAS  Google Scholar 

  • Li R, Hoess RH, Bennett JS, et al. (2003) Use of phage display to probe the evolution of binding specificity and affinity in integrins. Protein Eng 16:65–72

    Article  Google Scholar 

  • Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69:169–184

    Article  CAS  Google Scholar 

  • Lutolf MP, Lauer-Fields JL, Schmoekel HG, et al. (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100:5413–5418

    Google Scholar 

  • Lutolf MP, Tirelli N, Cerritelli S, et al. (2001) Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids. Bioconjug Chem 12:1051–1056

    Article  CAS  Google Scholar 

  • Lutolf MP, Weber FE, Schmoekel HG, et al. (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21:513–518

    Article  CAS  Google Scholar 

  • Maheshwari G, Brown G, Lauffenburger DA, et al. (2000) Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 113:1677–1686

    CAS  Google Scholar 

  • Mann BK, Gobin AS, Tsai AT, et al. (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051

    Article  CAS  Google Scholar 

  • Mann BK, Schmedlen RH, West JL (2001) Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22:439–444

    Article  CAS  Google Scholar 

  • Mann BK, Tsai AT, Scott-Burden T, et al. (1999) Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition. Biomaterials 20:2281–2286

    Article  CAS  Google Scholar 

  • Mann BK, West JL (2002) Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res 60:86–93

    Article  CAS  Google Scholar 

  • Mardilovich A, Craig JA, McCammon MQ, et al. (2006) Design of a novel fibronectin-mimetic peptide-amphiphile for functionalized biomaterials. Langmuir 22:3259–3264

    Article  CAS  Google Scholar 

  • Marler JJ, Guha A, Rowley J, et al. (2000) Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts. Plast Reconstr Surg 105:2049–2058

    Article  CAS  Google Scholar 

  • Massia SP, Hubbell JA (1990) Covalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Anal Biochem 187:292–301

    Article  CAS  Google Scholar 

  • Massia SP, Hubbell JA (1992) Immobilized amines and basic amino acids as mimetic heparin-binding domains for cell surface proteoglycan-mediated adhesion. J Biol Chem 267:10133–10141

    CAS  Google Scholar 

  • Massia SP, Hubbell JA (1992) Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin alpha 4 beta 1. J Biol Chem 267:14019–14026

    CAS  Google Scholar 

  • Morikawa N, Matsuda T (2002) Thermoresponsive artificial extracellular matrix: N-isopropylacrylamide-graft-copolymerized gelatin. J Biomater Sci Polym Ed 13:167–183

    Article  CAS  Google Scholar 

  • Myles JL, Burgess BT, Dickinson RB (2000) Modification of the adhesive properties of collagen by covalent grafting with RGD peptides. J Biomater Sci Polym Ed 11:69–86

    Article  CAS  Google Scholar 

  • Na K, Park JH, Kim SW, et al. (2006) Delivery of dexamethasone, ascorbate, and growth factor (TGF beta-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes. Biomaterials 27:5951–5957

    Article  CAS  Google Scholar 

  • Obara K, Ishihara M, Fujita M, et al. (2005) Acceleration of wound healing in healing-impaired db/db mice with a photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2. Wound Repair Regen 13:390–397

    Article  Google Scholar 

  • Ohya S, Nakayama Y, Matsuda T (2001) Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromolecules 2:856–863

    Article  CAS  Google Scholar 

  • Pantoliano MW, Horlick RA, Springer BA, et al. (1994) Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry 33:10229–10248

    Article  CAS  Google Scholar 

  • Park H, Temenoff JS, Holland TA, et al. (2005) Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26:7095–7103

    Article  CAS  Google Scholar 

  • Park KH, Kim MH, Park SH, et al. (2004) Synthesis of Arg-Gly-Asp (RGD) sequence conjugated thermo-reversible gel via the PEG spacer arm as an extracellular matrix for a pheochromocytoma cell (PC12) culture. Biosci Biotechnol Biochem 68:2224–2229

    Article  CAS  Google Scholar 

  • Park Y, Lutolf MP, Hubbell JA, et al. (2004) Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng 10:515–522

    Article  CAS  Google Scholar 

  • Park YD, Tirelli N, Hubbell JA (2003) Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials 24:893–900

    Article  CAS  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, et al. (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  Google Scholar 

  • Peattie RA, Nayate AP, Firpo MA, et al. (2004) Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials 25:2789–2798

    Article  CAS  Google Scholar 

  • Peattie RA, Rieke ER, Hewett EM, et al. (2006) Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants. Biomaterials 27:1868–1875

    Article  CAS  Google Scholar 

  • Pelham RJ, Jr., Wang YL (1998) Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull 194:348–349; discussion 349–350

    Article  CAS  Google Scholar 

  • Pike DB, Cai S, Pomraning KR, et al. (2006) Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials 27:5242–5251

    Article  CAS  Google Scholar 

  • Pouyani T, Prestwich GD (1994) Functionalized derivatives of hyaluronic acid oligosaccharides: drug carriers and novel biomaterials. Bioconjug Chem 5:339–347

    Article  CAS  Google Scholar 

  • Pratt AB, Weber FE, Schmoekel HG, et al. (2004) Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng 86:27–36

    Article  CAS  Google Scholar 

  • Raeber GP, Lutolf MP, Hubbell JA (2005) Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys J 89:1374–1388

    Article  CAS  Google Scholar 

  • Rajangam K, Behanna HA, Hui MJ, et al. (2006) Heparin binding nanostructures to promote growth of blood vessels. Nano Lett 6:2086–2090

    Article  CAS  Google Scholar 

  • Ranieri JP, Bellamkonda R, Bekos EJ, et al. (1994) Spatial control of neuronal cell attachment and differentiation on covalently patterned laminin oligopeptide substrates. Int J Dev Neurosci 12:725–735

    Article  CAS  Google Scholar 

  • Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75

    Article  CAS  Google Scholar 

  • Reyes CD, Garcia AJ (2004) Alpha2beta1 integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation. J Biomed Mater Res A 69:591–600

    Article  CAS  Google Scholar 

  • Rezania A, Healy KE (1999) Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog 15:19–32

    Article  CAS  Google Scholar 

  • Richardson TP, Peters MC, Ennett AB, et al. (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029–1034

    Article  CAS  Google Scholar 

  • Rizzi SC, Ehrbar M, Halstenberg S, et al. (2006) Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics. Biomacromolecules. 7:3019–3029

    Article  CAS  Google Scholar 

  • Rizzi SC, Hubbell JA (2005) Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules 6:1226–1238

    Article  CAS  Google Scholar 

  • Rosso F, Marino G, Giordano A, et al. (2005) Smart materials as scaffolds for tissue engineering. J Cell Physiol 203:465–470

    Article  CAS  Google Scholar 

  • Ruel-Gariepy E, Leroux JC (2004) In situ-forming hydrogels--review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426

    Article  CAS  Google Scholar 

  • Rundhaug JE. Matrix metalloproteinases and angiogenesis (2005) J Cell Mol Med 9:267–285

    Article  CAS  Google Scholar 

  • Sakiyama SE, Schense JC, Hubbell JA (1999) Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. Faseb J 13:2214–2224

    CAS  Google Scholar 

  • Saha K, Pollock JF, Schaffer DV, et al. (2007) Designing synthetic materials to control stem cell phenotype. Curr Opin Chem Biol 11:381–387

    Google Scholar 

  • Sakiyama-Elbert SE, Hubbell JA (2000) Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J Control Release 69:149–158

    Article  CAS  Google Scholar 

  • Sakiyama-Elbert SE, Hubbell JA (2000) Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 65:389–402

    Article  CAS  Google Scholar 

  • Sakiyama-Elbert SE, Panitch A, Hubbell JA (2001) Development of growth factor fusion proteins for cell-triggered drug delivery. Faseb J 15:1300–1302

    CAS  Google Scholar 

  • Schense JC, Bloch J, Aebischer P, et al. (2000) Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat Biotechnol 18:415–419

    Article  CAS  Google Scholar 

  • Schense JC, Hubbell JA (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 10:75–81

    Article  CAS  Google Scholar 

  • Schense JC, Hubbell JA (2000) Three-dimensional migration of neurites is mediated by adhesion site density and affinity. J Biol Chem 275:6813–6818

    Article  CAS  Google Scholar 

  • Schmoekel H, Schense JC, Weber FE, et al. (2004) Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices. J Orthop Res 22:376–381

    Article  CAS  Google Scholar 

  • Schmoekel HG, Weber FE, Schense JC, et al. (2005) Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol Bioeng 89:253–262

    Article  CAS  Google Scholar 

  • Seal BL, Panitch A (2003) Physical polymer matrices based on affinity interactions between peptides and polysaccharides. Biomacromolecules 4:1572–1582

    Article  CAS  Google Scholar 

  • Seliktar D, Zisch AH, Lutolf MP, et al. (2004) MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A 68:704–-716

    Article  CAS  Google Scholar 

  • Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364

    Article  CAS  Google Scholar 

  • Shin H, Jo S, Mikos AG (2002) Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethyleneglycol) spacer. J Biomed Mater Res 61:169–179

    Article  CAS  Google Scholar 

  • Shin H, Zygourakis K, Farach-Carson MC, et al. (2004) Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. Biomaterials 25:895–906

    Article  CAS  Google Scholar 

  • Shin H, Zygourakis K, Farach-Carson MC, et al. (2004) Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. J Biomed Mater Res A 69:535–543

    Article  CAS  Google Scholar 

  • Shu XZ, Ahmad S, Liu Y, et al. (2006) Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J Biomed Mater Res A 79:902–912

    Google Scholar 

  • Shu XZ, Ghosh K, Liu Y, et al. (2004) Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J Biomed Mater Res A 68:365–375

    Article  CAS  Google Scholar 

  • Shu XZ, Liu Y, Palumbo F, et al. (2003) Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 24:3825–3834

    Article  CAS  Google Scholar 

  • Silva GA, Czeisler C, Niece KL, et al. (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  CAS  Google Scholar 

  • Smeds KA, Pfister-Serres A, Miki D, et al. (2001) Photocrosslinkable polysaccharides for in situ hydrogel formation. J Biomed Mater Res 54:115–121

    Article  CAS  Google Scholar 

  • Stabenfeldt SE, Garcia AJ, LaPlaca MC (2006) Thermoreversible laminin-functionalized hydrogel for neural tissue engineering. J Biomed Mater Res A 77:718–725

    Google Scholar 

  • Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200:448–464

    Article  CAS  Google Scholar 

  • Steffensen B, Hakkinen L, Larjava H (2001) Proteolytic events of wound-healing--coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. Crit Rev Oral Biol Med 12:373–398

    Article  CAS  Google Scholar 

  • Suzuki Y, Tanihara M, Suzuki K, et al. (2000) Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res 50:405–409

    Article  CAS  Google Scholar 

  • Tae G, Scatena M, Stayton PS, et al. (2006) PEG-cross-linked heparin is an affinity hydrogel for sustained release of vascular endothelial growth factor. J Biomater Sci Polym Ed 17:187–197

    Article  CAS  Google Scholar 

  • Tanihara M, Suzuki Y, Yamamoto E, et al. (2001) Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate. J Biomed Mater Res 56:216–221

    Article  CAS  Google Scholar 

  • Wang N, Naruse K, Stamenovic D, et al. (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci U S A 98:7765–7770

    Google Scholar 

  • West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244

    Article  CAS  Google Scholar 

  • Whang K, Tsai DC, Nam EK, et al. (1998) Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res 42:491–499

    Article  CAS  Google Scholar 

  • Wissink MJ, Beernink R, Pieper JS, et al. (2001) Binding and release of basic fibroblast growth factor from heparinized collagen matrices. Biomaterials 22:2291–2299

    Article  CAS  Google Scholar 

  • Xiao Y, Truskey GA (1996) Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys J 71:2869–2884

    Article  CAS  Google Scholar 

  • Yeo Y, Geng W, Ito T, et al. (2006) Photocrosslinkable hydrogel for myocyte cell culture and injection. J Biomed Mater Res B Appl Biomater. Sep 12 2006.

    Google Scholar 

  • Zaari N, Rajagopalan P, Kim SK, et al. (2004) Photopolymerization in microfluidic gradient generators: Microscale control of substrate compliance to manipulate cell response. Advanced Materials 16:2133

    Article  CAS  Google Scholar 

  • Zaman MH, Trapani LM, Sieminski AL, et al. (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A 103:10889–10894

    Google Scholar 

  • Zhang S, Holmes T, Lockshin C, et al. (2003) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90:3334–3338

    Google Scholar 

  • Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  CAS  Google Scholar 

  • Zisch AH, Lutolf MP, Ehrbar M, et al. (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. Faseb J 17:2260–2262

    CAS  Google Scholar 

  • Zisch AH, Schenk U, Schense JC, et al. (2001) Covalently conjugated VEGF--fibrin matrices for endothelialization. J Control Release 72:101–113

    Article  CAS  Google Scholar 

  • Zisch AH, Zeisberger SM, Ehrbar M, et al. (2004) Engineered fibrin matrices for functional display of cell membrane-bound growth factor-like activities: study of angiogenic signaling by ephrin-B2. Biomaterials 25:3245–3257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Questions/Exercises

  1. 1.

    Explain the differences between traditional, early generation biomaterials and modern, biomimetic materials for regenerative medicine. How has knowledge of tissue physiology altered biomaterial design philosophy? What are the differences in host response between these types of materials?

  2. 2.

    Which aspects of natural tissues and ECMs have been mimicked in biomaterials? How do these influence cell function and tissue formation?

  3. 3.

    Describe the mechanisms of biomimetic materials that can be utilized to achieve cell- and tissue-specific response. Explain with examples.

  4. 4.

    Describe the general roles of receptor-ligand dynamics in cell behavior. What are the similarities, differences, and interactions of the receptor-ligand dynamics of growth factors and cell-adhesion ligands? Name at least three roles of enzymes in tissue dynamics.

  5. 5.

    Give examples of tissue dynamic processes. How are the feedback mechanisms between cells and the ECM bidirectional? What is the term for these interactions?

  6. 6.

    What are three fundamental strategies of biomaterials for directed tissue growth? How are these complementary? Give specific examples of their use in advanced biomimetic materials design.

  7. 7.

    Describe several methods can be used to form biomaterials in situ? What are the advantages of in situ biomaterial formation for tissue regeneration?

  8. 8.

    List aspects of cell-adhesion domains which can be controlled in biomimetic materials? How do these aspects influence cell behavior? What methods are used to incorporate cell-adhesion domains?

  9. 9.

    What are the advantages of enzymatic degradability in biomimetic materials? Describe specific ways that this property can be imparted?

  10. 10.

    List at least three methods of incorporating growth factor activity into biomimetic materials. Predict the release profiles of growth factors from these materials.

Top Ten Original Publications from the Last Decade

Ehrbar M, Metters A, Zammaretti P, et al. (2005) Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 101(1–3):93–109.

Elisseeff J, Anseth K, Sims D, et al. (1999) Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci U S A 96(6):3104–3107.

Engler AJ, Sen S, Sweeney HL, et al. (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689.

Ghosh K, Ren XD, Shu XZ, et al. (2006) Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 12(3):601–613.

Kim S, Chung EH, Gilbert M, et al. (2005) Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J Biomed Mater Res A 75(1):73–88.

Kuhl PR, Griffith-Cima LG, (1996) Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat Med 2(9):1022–1027.

Lutolf MP, Weber FE, Schmoekel HG, et al. (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol21(5):513–518.

Rajangam K, Behanna HA, Hui MJ, et al. (2006) Heparin binding nanostructures to promote growth of blood vessels. Nano Lett 6(9):2086–2090.

West JL, Hubbell JA. (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32(1):241–244.

Zaman MH, Trapani LM, Sieminski AL, et al. (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A 103(29):10889–10894.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pollock, J.F., Healy, K.E. (2009). Biomimetic and Bio-responsive Materials in Regenerative Medicine. In: Santin, M. (eds) Strategies in Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74660-9_4

Download citation

Publish with us

Policies and ethics