Advertisement

Biomaterials for Tissue Engineering of Hard Tissues

  • Elisabeth Engel
  • Oscar Castaño
  • Emiliano Salvagni
  • Maria Pau Ginebra
  • Josep A. Planell
Chapter

Function and Structure of Bone

Bone is a specialized connective tissue that, as a part of the skeletal system, has three functions: (1) mechanical: support and site of muscle attachment for locomotion; (2) protective: for vital organs and bone marrow; and (3) metabolic: as a reserve of ions, specially calcium and phosphate, for the maintenance of serum homeostasis, which is essential to life (see Chapters 14 and 15).

Fundamental constituents of bone are cells and the extracellular matrix (ECM). This ECM is formed by an organic and a mineral phase. The organic phase is mainly formed by collagen fibers (Collagen type I) and correspond to 90% of the total protein. The 10% left corresponds to other non-collagenous proteins form the organic matrix, as proteoglycans and glycoproteins (as osteoclacin, osteonectin, and osteopontin), and several growth factors. These proteins are incorporated on the collagen matrix during its formation or afterwards. Even though their function is not completely...

Keywords

Contact Angle Hyaluronic Acid Bone Tissue Bioactive Glass Fibrin Sealant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank to The Spanish Ministerio de Educación y Ciencia, to the Departament d'Innovació, Universitats i Empresa de la Generalitat de Catalunya, and to the Marie Curie Fellowship Association for the research grants.

Some of the work described in this manuscript has been supported by Commission European Union: European project SMART-CaP ,Injectable Macroporous Biomaterials Based on Calcium Phosphate Cement Bone Regeneration, contract number: NMP3-CT-500465 ; European Project STEPS, A System Approach to Tissue Engineering Processes and Products, contract number FP6-500465.

The authors also would like to thank Dr. Samuel Stupp for kindly providing figure 17, and the companies Klockner SA, Spain, Zimmer Dental Inc. USA, as well as all the personnel of the Grup de Biomaterials, Biomecànica i Enginyeria de Teixits (BIBITE) for their contributions.

References

  1. Ambrosio AM, Sahota JS, Khan Y, Laurencin CT (2001) A novel amorphous calcium phosphate polymer ceramic for bone repair: I. synthesis and characterization. J Biomed Mater Res 58:295–301CrossRefGoogle Scholar
  2. Anagnostoua F, Debeta A, Pavon-Djavidb G, Goudabyb Z, Hélaryb G and Migonneyb V (2006) Biomaterials 27:3912–3919CrossRefGoogle Scholar
  3. Anderson OH and Kangansniemi L (1991) Calcium phosphate formation at the surface of bioactive glass in vivo. J Biomed Mater Res 25:1019–1030CrossRefGoogle Scholar
  4. Annual Book of ASTM Standards 2000, Section 13 Medical Devices.Google Scholar
  5. Arnaud, E, De Pollak C, Meunier A, Sedel L, Damien C, Petite H (1999) Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials 20:1909–1918CrossRefGoogle Scholar
  6. Badylak SF (2002) Modification of natural polymers: Collagen. In: Atala A, Lanza RP (eds) Methods of tissue engineering. San Diego, CA: Academic Presspp. pp 505–514Google Scholar
  7. Behravesh E, Zygourakis K, Mikos AG (2003) Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)- based hydrogels with a covalently linked RGDS peptide. J Biomed Mater Res Part A 65:260–270CrossRefGoogle Scholar
  8. Berlot, S, Aissaoui Z, Pavon-Djavid G, Belleney J, Jozefowicz M, Helary G, Migonney V (2002) Biomimetic poly(methyl methacrylate)-based terpolymers: modulation of bacterial adhesion effect. Biomacromolecules 3:63–68CrossRefGoogle Scholar
  9. Berlot-Moirez S, Pavon-Djavid G, Montdargent B, Jozefowicz M, Migonney V (2002), Modulation of Staphylococcus aureus adhesion by biofunctional copolymers derived from polystyrene. ITBM 23:102–108CrossRefGoogle Scholar
  10. Black J., Hastings G. (1998) Handbook of biomaterials properties, Chapman & Hall, London.CrossRefGoogle Scholar
  11. Blades MC. Moore DP. Revelli PA, Hill RG (1998) J Mat Sci Mat Med 9:701CrossRefGoogle Scholar
  12. Boccaccini AR, Blakera JJ, Maquet V, Day RM, Jérôme R (2005), Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/Bioglass(R) composite tubular foam scaffolds for tissue engineering applications. Mater Sci Eng C 25:23–31CrossRefGoogle Scholar
  13. Boccaccini AR, Stamboulis AG, Rashid A, Roether JA (2003) Composite surgical sutures with bioactive glass coating. J Biomed Mater Res B: Appl Biomater 67B:618–626CrossRefGoogle Scholar
  14. Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/Bioglass(R) composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63:2417–2429 CrossRefGoogle Scholar
  15. Boden SD (1999) Bioactive factors for bone tissue engineering. Clin Orthop Relat Res 367:S84–94CrossRefGoogle Scholar
  16. Bradt J, Mertig M, Teresiak A, Pompe, W (1999) Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 11: 2694–2701CrossRefGoogle Scholar
  17. Burg KJL, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359CrossRefGoogle Scholar
  18. Cao Y, Mitchell G, Messina A, Price L, Thompson E, Penington A, Morrison W, O’Connor A, Stevens G, Cooper-White JJ (2006) The influence of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo Biomaterials 27:2854–2864Google Scholar
  19. Chang C, Huang J, Xia J, Ding C (1999) Study on crystallization kinetics of plasma sprayed hydroxyapatite coating. Ceramics Int 25:479–483CrossRefGoogle Scholar
  20. Charnley J (1960) Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Joint Surg Br 42-B:28–30Google Scholar
  21. Chen F, Yoo JJ, Atala A (1999) Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology 54:407–410CrossRefGoogle Scholar
  22. Choi SH, Park TGJ (2002) Biomater Sci Polym 13:1163–1174CrossRefGoogle Scholar
  23. Cook WD. Forrest M, Goodwin AA. (1999) A simple method for the measurement of polymerization shrinkage in dental composites. Dent Mater 15:447–449CrossRefGoogle Scholar
  24. Cremieux AC, Pavon-Djavid G, Saleh Mghir A, Helary G, Migonney V (2003) Bioactive polymers grafted on silicone to prevent Staphylococcus aureus prosthesis adherence: in vitro and in vivo studies. JABBS 1:178–185Google Scholar
  25. Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM (2004) Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds, Biomaterials 25:5857–5866CrossRefGoogle Scholar
  26. Delmi M, Vaudaux P, Lew DP, Vasey H (1994) Role of fibronectin in staphylococcal adhesion to metallic surfaces used as models of orthopaedic devices. J Orthop Res 12:432–438 CrossRefGoogle Scholar
  27. Deng X, Hao J, Wang C (2001) Preparation and mechanical properties of nanocomposites of poly(d,l-lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials 22:2867–2873CrossRefGoogle Scholar
  28. Devin JE, Attawia MA, Laurencin CT (1996) Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair. J Biomater Sci Polym Ed 7:661–669CrossRefGoogle Scholar
  29. Duerig, TW. Melton KN. Stöckel D, Wayman CM (1990) “Engineering aspects of shape memory alloys”. ISBN 0-750-61009-3. London: Butterworth Heinemann.Google Scholar
  30. El Gannham A (2005) Bone reconstruction: from biocermamics to tissue engineering. Exper Rev Med Devices 2:87–101CrossRefGoogle Scholar
  31. El Khadali F, Hélary G, Pavon-Djavid G, Migonney V (2002) Modulating fibroblast cell proliferation with functionalized poly(methyl methacrylate) based copolymers: chemical composition and monomer distribution effect. Biomacromolecules 3:51–56CrossRefGoogle Scholar
  32. Firkowska I. Giannona S, Rojas-Chapana R. and Giersig M (2006) Qualitative evaluation of the response of human osteoblast cells to nanotopography surfaces based on carbon nanotubes. Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show, Volume 2, Nanotech 2006 Vol. 2Google Scholar
  33. Fujishiro Y, Oonishi H, Hench LL (1997) Quantitative comparison of in vivo bone generation with particulate Bioglass®. In: Sedel L, Rwy C (Eds) Bioceramics 10. Elsevier, NY, USA, pp 283–286Google Scholar
  34. Giesen EB, Ding M, Dalstra M, van Eijden TM (2001) Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech 34:799–803CrossRefGoogle Scholar
  35. Ginebra MP, Traykova T, Planell JA (2006) Calcium phosphate cements as bone drug delivery systems: A review. J Controlled Release 113:102–110CrossRefGoogle Scholar
  36. Girton TS, Barocas VH, Tranquillo RT (2002) Confined compression of a tissue-equivalent: collagen fibril and cell alignment in response to anisotropic strain. J Biomech Eng 124:568–575CrossRefGoogle Scholar
  37. Gledhill HC, Turner IG, Doyle C (2001) In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings. Biomaterials 22:1233–1240CrossRefGoogle Scholar
  38. Guan L, Davies JE (2004) Preparation and characterisation of a highly macroporous biodegradable composite tissue engineering scaffold. J Biomed Mater Res 71A:480–487CrossRefGoogle Scholar
  39. Hamdi M, Hakamata S, Ektessabi AM (2000) Thin Solid Films 377/378:484–489CrossRefGoogle Scholar
  40. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684CrossRefGoogle Scholar
  41. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human bone marrow. Bone 13:81–88CrossRefGoogle Scholar
  42. Heimann RB, Wirth R (2006) Biomaterials 27:823–831CrossRefGoogle Scholar
  43. Helm GA, Gazit Z (2005) Future uses of mesenchymal stem cells in spine surgery. Neurosurg Focus 19:E13CrossRefGoogle Scholar
  44. Hollinger JO, Battistone GC (1986) Biodegradable bone repair materials—Synthetic-polymers and ceramics. Clin Orthop Rel Res. 290–305Google Scholar
  45. Horwitz EM, Gordon PL, Koo WKK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogenic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone PNAS 25:8932–8937 http://www.mindat.org – the mineral and locality database
  46. IARC Monographs (1999) on the Evaluation of Carcinogenic Risks to Humans: Surgical Implants and Other Foreign Bodies, Lyon 74:65Google Scholar
  47. Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36:17–28CrossRefGoogle Scholar
  48. Jaakkola T, Rich J, Tirri T, Narhi T, Jokinen M, Seppala J, Yli-Urpo A (2004) In vitro Ca-P precipitation on biodegradable thermoplastic composite of poly([epsilon]-caprolactone-co-lactide) and bioactive glass (S53P4). Biomaterials 25:575–581CrossRefGoogle Scholar
  49. Jansen B (1990) Bacterial adhesion to medical polymers—use of radiation techniques for the prevention of materials-associated infections. Clin Mater 6:65–74CrossRefGoogle Scholar
  50. Jones JR, Ehrenfried LM, Hencha LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973CrossRefGoogle Scholar
  51. Juhasz JA, Best SM, Brooks R, Kawashita M, Miyata N, Kokubo T, Nakamura T, Bonfield W (2004) Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size. Biomaterials 25:949–955CrossRefGoogle Scholar
  52. Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316:1–11 Google Scholar
  53. Karageorgiou V, David K (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRefGoogle Scholar
  54. Karp JM, Rzeszutek K, Shoichet MS, Davies JE (2003) Fabrication of precise cylindrical three-dimensional tissue engineering scaffolds for in vitro and in vivo bone engineering applications. J Craniofac Surg 14:317–323CrossRefGoogle Scholar
  55. Kasuga T, Ota Y, Nogami M, Abe Y (2001) Preparation and mechanical properties of polylactide acid composites containing hydroxyapatite fibres. Biomaterials 22:9–23CrossRefGoogle Scholar
  56. Kenny SM, Buggy M (2003) Bone cements and fillers: a review. J Mater Sci Mater Med 14:923–938 CrossRefGoogle Scholar
  57. Kikuchi M, Tanaka J, Koyama Y, Takakuda K (1999) Cell culture tests of TCP/CPLA composite, J Biomed Mater Res 48:108–110CrossRefGoogle Scholar
  58. King KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Phil Trans R Soc Lond A 362:2821–2850CrossRefGoogle Scholar
  59. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–37CrossRefGoogle Scholar
  60. Kulkarni RK, Moore EG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers, J Biomed Mater Res 5:169–181 CrossRefGoogle Scholar
  61. Latz C, Pavon-Djavid G, Helary G, Evans MD, Migonney V (2003) Alternative intracellular signaling mechanism involved in the inhibitory biological response of functionalized PMMA-based polymers. Biomacromolecules 4:766–771CrossRefGoogle Scholar
  62. Lazarus HM, Haneysworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow derived stromal progenitor cells (mesenchymal progenitors cells): Implications for therapeutic use. Bone Marrow Transplant 15:935–942Google Scholar
  63. Le Guéhennec L, Layrolle P, Daculsi G (2004) Review of bioceramics and fibrin sealant. Eur Cells Mater 8:1–11Google Scholar
  64. Lee B, Litt M, Buchsbaum G (1994) Rheology of the vitreous body: part 3. Concentration of electrolytes, collagen and hyaluronic acid. Biorheology 31:339–351Google Scholar
  65. Lee IS, Whang CN, Kim HE, Park JC, Song JH, Kim SR (2002) Mater Sci Eng: C 22:15–20CrossRefGoogle Scholar
  66. Lee SH, Kim HW, Lee EJ, Li LH, Kim HE (2000) Hydroxyapatite-TiO2 hybrid coating on Ti implants. Biomaterials 21:469–473 CrossRefGoogle Scholar
  67. Legeros RZ (1991) Calcium phosphates in Oral biology and Medicine, Karger, New YorkGoogle Scholar
  68. Li H. and Chang J (2004) Preparation and characterisation of bioactive and biodegradable wollastonite/poly(d,l-lactic acid) composite scaffolds. J Mater Sci. Mater Med 15:1089–1095CrossRefGoogle Scholar
  69. Lim GK, Wang J, Ng SC, Chew CH, Gan LM (1997) Processing of hydroxyapatite via microemulsion and emulsion routes. Biomaterials 18:1433–1439CrossRefGoogle Scholar
  70. Liu X, Ma PX (2004) Polymeric Scaffolds for Bone Tissue Engineering. Ann Biomed Eng 32:477–486CrossRefGoogle Scholar
  71. Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng: R: Rep 47:49–121CrossRefGoogle Scholar
  72. Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H (2005) Engineering bone: challenges and obstacles. J Cell Mol Med 9:72–84CrossRefGoogle Scholar
  73. Lundberg F, Gouda I, Larm O, Galin MA, Ljungh A (1998) A new model to assess staphylococcal adhesion to intraocular lenses under in vitro flow conditions. Biomaterials 19:1727–1733CrossRefGoogle Scholar
  74. Ma PX, Zhang RY (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56:469–477CrossRefGoogle Scholar
  75. Magan A, Ripamonti U (1996) Geometry of porous hydroxyapatite implants influences osteogenesis in baboons (Papio ursinus). J Craniofac Surg 7:71–78 CrossRefGoogle Scholar
  76. Mathis RL, Ferrancane JL (1989) Dent Mat 5:355CrossRefGoogle Scholar
  77. Meffert R, Thomas J, Hamilton K, Brownstein C (1985) Hydroxylapatite as an alloplastic graft in the treatment of periodontal osseous defect. J Periodontol 56:63–73CrossRefGoogle Scholar
  78. Miller RA, Brady JM, Cutright DE (1997) Degradation rates of oral resorbable implants and (polylactates and polyglycolates): Rate modification with changes in PLA/POA ratios. J Biomed Mater Res 11:711CrossRefGoogle Scholar
  79. Mizuno M, Shindo M, Kobayashi D, Tsuruga E, Amemiya A, Kuboki Y (1997) Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 20:101–107CrossRefGoogle Scholar
  80. Nakayama Y, Yamamuro T, Kotoura Y, Oka M (1989) In vivo measurement of anodic polarization of orthopaedic implant alloys: comparative study of in vivo and in vitro experiments. Biomaterials 10:420–424CrossRefGoogle Scholar
  81. Navarro M, Aparicio C, Charles-Harris M, Ginebra MP, Ángel E, Planell JA (2006) Development of biodegradable composite scaffolds for bone tissue engineering: physicochemical, topographical, mechanical degradation, and biological properties. Adv Polym Sci 200:209–231CrossRefGoogle Scholar
  82. Nelea V, Morosanu C, Iliescu M, Mihailescu IN (2005) Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study. Appl Surf Sci 228:346–356CrossRefGoogle Scholar
  83. Neo M, Nakamura T, Ohtsuki C, Kokubo T, Yamamuro T (1993) Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy. J Biomed Mater Res 27:999–1006CrossRefGoogle Scholar
  84. Nicholson JW, Brookman PJ, Lacy OM, Savers GS, Wilson AD (1988) J Biomed Mater Res 22:623 CrossRefGoogle Scholar
  85. Niederwanger M, Urist MR (1996) Demineralized bone matrix supplied by bone banks for a carrier of recombinant human bone morphogenetic protein (rhBMP-2), a substitute for autogeneic bone grafts. J Oral Implantol 22:210–215Google Scholar
  86. Ogino M, Ohuchi F, Hench LL (1980) Compositional dependence on the formation of calcium phosphate films on bioglass. J Biomed Mater Res 14:55–64CrossRefGoogle Scholar
  87. Ohtsuki C, Kushitani H, Kokubo T, Kotani S, Yamamuro T (1991) Apatite formation on the surface of Ceravital-type glass-ceramic in the body. J Biomed Mater Res 25: 1363–1370CrossRefGoogle Scholar
  88. Onoki T, Hashida T (2006) New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique. Surf Coat Technol 200:6801–6807CrossRefGoogle Scholar
  89. Parikh SN (2002) Bone graft substitutes: past, present, future. J Postgrad Med 48:142–148Google Scholar
  90. Park SN, Park JC, Kim HO, Song MJ, Suh H (2002) Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials 23:1205–1212CrossRefGoogle Scholar
  91. Peacock SJ, Day NP, Thomas MG, Berendt AR, Foster TJ (2000) Clinical isolates of Staphylococcus aureus exhibit diversity in fnb genes and adhesion to human fibronectin, J Infect 41:23–31 CrossRefGoogle Scholar
  92. Peter SJ, Lu L, Kim DJ and Mikos AG (2000) Marrow stromal osteoblast function on a poly(propylene fumarate)/β-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 21:1207–1213 CrossRefGoogle Scholar
  93. Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1998) Polymer concepts in tissue engineering. J Biomed Mater Res 43:422–427CrossRefGoogle Scholar
  94. Peters WJ, Jackson RW, Iwano K, Smith DC (1972) The. biological responses to zinc polyacrylate cement. Clin Orthop 88:228CrossRefGoogle Scholar
  95. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–63CrossRefGoogle Scholar
  96. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhaematopoietic tissues. Science 276:71–4CrossRefGoogle Scholar
  97. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224CrossRefGoogle Scholar
  98. Rezwana K, Chena QZ, Blakera JJ, Boccaccini AR (2006) AR, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRefGoogle Scholar
  99. Rich J, Jaakkola T, Tirri T, Narhi T, Yli-Urpo A, Seppala J (2002) In vitro evaluation of poly([var epsilon]-caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials 23:2143–2150CrossRefGoogle Scholar
  100. Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jerjme R (2002) Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass(R) for tissue engineering applications. Biomaterials 23:3871–3878CrossRefGoogle Scholar
  101. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53CrossRefGoogle Scholar
  102. Schepers E, de Clercq M, Ducheyne P, Kempeneers R (1991) Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil 18:439–452CrossRefGoogle Scholar
  103. Schepers EJ, Ducheyne P, Barbier L, Schepers S (1993) Bioactive glass particles of narrow size range: a new material for the repair of bone defects. Implant Dent 2:151–156CrossRefGoogle Scholar
  104. Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration , Mater Sci Eng: R: Rep 34:147–230CrossRefGoogle Scholar
  105. Segura T, Show, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD (2005) Crosslinked hyaluronic acid hydrogels: A strategy to functionalize and pattern. Biomaterials 26(4):359–371Google Scholar
  106. Serhan H, Slivka M, Albert T, Kwak SD (2004) Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?, Spine J 4:379–387CrossRefGoogle Scholar
  107. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192CrossRefGoogle Scholar
  108. Shikinami Y, Okuno M (2001) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly -lactide (PLLA). Part II: practical properties of miniscrews and miniplates. Biomaterials 22:3197–3211CrossRefGoogle Scholar
  109. Shimizu K, Tadaki T (1987) Shape Memory Alloys, In: Funakubo H (ed) Gordon and Breach Science Publishers, New York.Google Scholar
  110. Smith DC (1968) Br Dent J 125:381Google Scholar
  111. Soballe K, Hansen ES, Brockstedt-Rasmussen H, Bunger C (1993) Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J Bone Joint Surg Br 75:270–8Google Scholar
  112. Solchaga LA, Dennis JE, Goldberg VM, Caplan AI (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 17:205–213CrossRefGoogle Scholar
  113. Solheim E (1998) Growth factors in bone. Int Orthopaedics 22:410–416CrossRefGoogle Scholar
  114. Stamboulis AG (2002) Novel biodegradable polymer/bioactive glass composites for tissue engineering applications. Adv Eng Mater 4:105–109CrossRefGoogle Scholar
  115. Stanley HR, Hall MB, Clark AE, King C, Hench LL, Berte JJ (1997) Using 45S5 bioglass cones as endosseous ridge maintenance implant to prevent alveolar ridge resorption: a 5 year evolution. Int J Maxillofac Implants 12:95–105Google Scholar
  116. Stauffer RN (1982) Ten-year follow-up study of total hip replacement. J Bone Joint Surg Am 64:983–990Google Scholar
  117. Sumita M, Hanawa T, Teoh SH (2004) Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials-review. Mater Sci Eng C, 24:753–760CrossRefGoogle Scholar
  118. Sumita M, Ikada Y, Tateishi T (2000) Metallic Biomaterials—Fundamentals and Applications, ICP, Tokyo p. 629Google Scholar
  119. Takahashi Y, Yamamoto M, Tabata Y (2005) Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials 26:3587–3596CrossRefGoogle Scholar
  120. Teoh SH (2000) Fatigue of biomaterials: a review. Int J Fatigue 22:825–837CrossRefGoogle Scholar
  121. Thomson RC, Wake MC, Yaszemski MJ, Mikos AG (1995) Biodegradable polymer scaffolds to regenerate organs. Adv Polym Sci 122:245–274CrossRefGoogle Scholar
  122. Tisdel CL, Goldberg VM, Parr JA, Bensusan JS, Staikoff LS, Stevenson S (1994) The influence of a hydroxyapatite and tricalcium phosphatae coating on bone growth into titanium fiber-metal implants. J Bone Joint Surg Am 76:159–71Google Scholar
  123. Traykova T, Aparicio C, Ginebra MP, Planell JA (2006) Bioceramics as nanomaterials, Nanomedicine 1:91–106CrossRefGoogle Scholar
  124. United States Patent 5916498.Method of manufacturing a dental prosthesis.Google Scholar
  125. van Dijk K, Schaeken HG, Wolke JGC, Jansen JA (1996) Biomaterials 17:405–410CrossRefGoogle Scholar
  126. Vaudaux P, Yasuda H, Velazco MI, Huggler E, Ratti I, Waldvogel FA, Lew DP, Proctor RA (1990) Role of host and bacterial factors in modulating staphylococcal adhesion to implanted polymer surfaces. J Biomater Appl 5:134–153CrossRefGoogle Scholar
  127. Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR (2004) PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials 25:3013–3021CrossRefGoogle Scholar
  128. Vogel M, Voigt C, Gross U, Müller-Mai C (2001) In vivo comparison of bioactive glass particles in rabbits. Biomaterials 22:357–362, 26:359–371CrossRefGoogle Scholar
  129. Wang C, Ma J, Cheng W, Zhang R (2002) Thick hydroxyapatite coatings by electrophoretic deposition. Mater Letters 57: 99–105CrossRefGoogle Scholar
  130. Wang CX, Chen ZQ, Guan LM, Wang M, Liu ZY, Wang PL (2001) Beam interactions with materials and atoms, fabrication and characterization of graded calcium phosphate coatings produced by ion beam sputtering/mixing deposition. Nucl Instrum Methods Phys Res B 179:364–372CrossRefGoogle Scholar
  131. Williams DF (1998) Medical and dental materials, materials science and technology vol. 14, VCH, WeinheimGoogle Scholar
  132. Wilson AD, Kent BE (1971) J Appl Chem Biotechnol 21:313CrossRefGoogle Scholar
  133. Xu HHK, Simon JCG (2004) Self-hardening calcium phosphate composite scaffold for bone tissue engineering. J Orthop Res 22:535–543CrossRefGoogle Scholar
  134. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Tissue Eng. 7:679–689CrossRefGoogle Scholar
  135. Yarlagadda PKDV, Chandrasekharan M, Shyan JYM (2005) Recent advances and current developments in tissue scaffolding. Bio-Med Mater Eng 15:159–177Google Scholar
  136. Yaszenski MJ, Payne RG, Hayes WC, Langer R, Aufdemorte TB, Mikos AG (1995) The ingrowth of new bone tissue and initial mechanical properties of a degrading polymeric composite scaffold. Tissue Eng 1:41–52CrossRefGoogle Scholar
  137. Yuan H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20:1799–1806CrossRefGoogle Scholar
  138. Zhang K, Wang Y, Hillmyer MA, Francis LF (2004) Processing and properties of porous poly(l-lactide)/bioactive glass composites. Biomaterials 25:2489–2500CrossRefGoogle Scholar
  139. Zhang RY, Ma PX (1999) Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 44:446–455CrossRefGoogle Scholar
  140. Zhang Y, Tao J, Pang Y, Wang W, Wang T (2006) Transactions of nonferrous metals society of China, vol. Elsevier, New York, pp 633–637Google Scholar
  141. Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D, (2004) Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25:2695–2711CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elisabeth Engel
  • Oscar Castaño
  • Emiliano Salvagni
  • Maria Pau Ginebra
  • Josep A. Planell
    • 1
  1. 1.Biomaterials, Biomechanics and Tissue Engineering Research GroupInstitut de Bioenginyeria de Catalunya, IBEC. Universitat Politècnica de CatalunyaBaldiri ReixacSpain

Personalised recommendations