Clinical Applications of Bone Tissue Engineering

  • Silvia Scaglione
  • Rodolfo Quarto


Several major progresses and improvements have been introduced in the field of bone regenerative medicine during the last few years, as innovative alternatives to current therapies which still present many limitations. Natural processes of bone repair are sufficient to restore the skeletal integrity for most fractures. However, the auto-regenerative potential of bone cannot handle large size “critical” lesion. Therefore, manipulation of natural healing mechanisms to regenerate larger bone segments is often required in reconstructive surgery.

Tissue Engineering (TE) has represented surely the most innovative and attractive approach for potentially solving many of the problems in orthopedic surgery.

Tissue Engineering, a relatively new field in medicine, has to be considered as a sequence of phases going from the research project to the design and production of bioactive matrices and ideally of a living tissue substitute. This main objective can be approached in different...


Mesenchymal Stem Cell Skeletal Tissue Blood Vessel Invasion Large Bone Defect Pilot Clinical Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



  1. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–22CrossRefGoogle Scholar
  2. Alison MR, Brittan M, Lovell MJ, Wright NA (2006) Markers of adult tissue-based stem cells. Handb Exp Pharmacol 174:185–227. ReviewGoogle Scholar
  3. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 28:707–15CrossRefGoogle Scholar
  4. Banfi A, Bianchi G, Notaro R, Luzzatto L, Cancedda R, Quarto R (2002) Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells. Tissue Eng 8:901–10CrossRefGoogle Scholar
  5. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20:1055–60CrossRefGoogle Scholar
  6. Bianco P, Gehron Robey P (2000) Marrow stromal stem cells. J Clin Invest 105:1663–8CrossRefGoogle Scholar
  7. Boheler KR (2004) Functional markers and the “homogeneity” of human mesenchymal stem cells. J Physiol 554(Pt3):592CrossRefGoogle Scholar
  8. Bosch P, Musgrave DS, Lee JY, Cummins J, Shuler T, Ghivizzani TC, Evans T, Robbins TD, Huard (2000) Osteoprogenitor cells within skeletal muscle. J Orthop Res 18:933–44CrossRefGoogle Scholar
  9. Boyde A, CorsI A, Quarto R, Cancedda R, Bianco P (1999) Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone 24:579–89CrossRefGoogle Scholar
  10. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80:985–96Google Scholar
  11. Caterson EJ, Nesti LJ, Albert T, Danielson K, Tuan R (2001) Application of mesenchymal stem cells in the regeneration of musculoskeletal tissues. Medscape General. Medicine 3(1), E1. ReviewGoogle Scholar
  12. Chacko DM, Das AV, Zhao X, James J, Bhattacharya S, Ahmad I (2003) Transplantation of ocular stem cells: the role of injury in incorporation and differentiation of grafted cells in the retina. Vision Res. 43:937–46CrossRefGoogle Scholar
  13. Chailakhan RK, Lalykina KS (1969) Spontaneous and induced differentiation of osseous tissue in a population of fibroblast-like cells obtained from long-term monolayer cultures of bone marrow and spleen. Dokl Akad Nauk SSSR. 187:473–5Google Scholar
  14. Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW (2000) Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials. 21:1291–8CrossRefGoogle Scholar
  15. Collett GD, Canfield AE (2005) Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res. 96:930–8CrossRefGoogle Scholar
  16. De Oliveira JF, De Aguiar PF, Rossi AM, Soares GA (2003) Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds. Artif Organs. 27:406–11CrossRefGoogle Scholar
  17. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–44CrossRefGoogle Scholar
  18. Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–38CrossRefGoogle Scholar
  19. Dong J, Kojima H, Uemura T, Kikuchi M, Tateishi T, Tanaka J (2001) In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells. J Biomed Mater Res 57:208–16CrossRefGoogle Scholar
  20. Dong J, Uemura T, Shirasaki Y, Tateishi T (2002) Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 23:4493–502CrossRefGoogle Scholar
  21. Dyce PW, Zhu H, Craig J, Li J (2004) Stem cells with multilineage potential derived from porcine skin. Biochem Biophys Res Commun 316:651–8CrossRefGoogle Scholar
  22. El-Ghannam A (2005) Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices 2:87–101CrossRefGoogle Scholar
  23. Erbe EM, Marx JG, Clineff TD, Bellincampi LD (2001) Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J (10 Suppl) 2:S141–6Google Scholar
  24. Flautre B, Anselme K, Delecourt C, Lu J, Hardouin P, Descamps M (1999) Histological aspects in bone regeneration of an association with porous hydroxyapatite and bone marrow cells. J Mater Sci Mater Med 10:811–4CrossRefGoogle Scholar
  25. Friedenstein AJ, Lalykina KS (1972) Thymus cells are inducible to osteogenesis. Eur J Immunol 2:602–3CrossRefGoogle Scholar
  26. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–90Google Scholar
  27. Garbossa D, Fontanella M, Fronda C, Benevello C, Muraca G, Ducati A, Vercelli A (2006) New strategies for repairing the injured spinal cord: the role of stem cells. Neurol Res 28:500–4CrossRefGoogle Scholar
  28. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 19:133–9CrossRefGoogle Scholar
  29. Gauthier O, Muller R, von Stechow D, Lamy B, Weiss P, Bouler JM, Aguado E, Daculsi G (2005) In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials 26:5444–53CrossRefGoogle Scholar
  30. Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3:1–8Google Scholar
  31. Ge Z, Goh JC, Lee EH (2005) The effects of bone marrow-derived mesenchymal stem cells and fascia wrap application to anterior cruciate ligament tissue engineering. Cell Transplant 14:763–73CrossRefGoogle Scholar
  32. Guasch G (2006) Epithelial stem cells in the skin. Med Sci (Paris) 22:710–2Google Scholar
  33. Hokugo A, Sawada Y, Sugimoto K, Fukuda A, Mushimoto K, Morita S, Tabata Y (2006) Preparation of prefabricated vascularized bone graft with neoangiogenesis by combination of autologous tissue and biodegradable materials. Int J Oral Maxillofac Surg 35(11):1034–40Google Scholar
  34. Huang JI, Beanes SR, Zhu M, Lorenz HP, Hedrick MH, Benhaim P (2002) Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast Reconstr Surg 109:1033–41; discussion 1042–3CrossRefGoogle Scholar
  35. Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32:414–25.CrossRefGoogle Scholar
  36. Johnston, N (2004) Skin stem cells. Drug Discov Today 9:994CrossRefGoogle Scholar
  37. Jorgensen C, Noel D, Apparailly F, Sany J (2001) Stem cells for repair of cartilage and bone: the next challenge in osteoarthritis and rheumatoid arthritis. Ann Rheum Dis 60:305–9CrossRefGoogle Scholar
  38. Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–34CrossRefGoogle Scholar
  39. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–91CrossRefGoogle Scholar
  40. Kim DS, Cho HJ, Choi HR, Kwon SB, Park KC (2004) Isolation of human epidermal stem cells by adherence and the reconstruction of skin equivalents. Cell Mol Life Sci 61:2774–81CrossRefGoogle Scholar
  41. Klein S, Svendsen CN (2005) Stem cells in the injured spinal cord: reducing the pain and increasing the gain. Nat Neurosci 8:259–60CrossRefGoogle Scholar
  42. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon's point of view. J Cell Mol Med 10:7–19CrossRefGoogle Scholar
  43. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–37CrossRefGoogle Scholar
  44. Krampera M, Pizzolo G, Aprili G, Franchini M (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–83CrossRefGoogle Scholar
  45. Kumta SM, Kendal N, Lee YL, Panozzo A, Leung PC, Chow TC (1997) Bacterial colonization of bone allografts related to increased interval between death and procurement: an experimental study in rats. Arch Orthop Trauma Surg 116:496–7CrossRefGoogle Scholar
  46. Kurz LT, Garfin SR, Booth RE Jr (1989) Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine 14:1324–31CrossRefGoogle Scholar
  47. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J Cell Biol 153:1133–40CrossRefGoogle Scholar
  48. Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5:485–9CrossRefGoogle Scholar
  49. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–41CrossRefGoogle Scholar
  50. Leung VY, Chan D, Cheung KM (2006) Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J (15 Suppl) 15:406–13CrossRefGoogle Scholar
  51. Levy MM, Joyner CJ, Virdi AS, Reed A, Triffitt JT, Simpson AH, Kenwright J, Stein H, Francis MJ (2001) Osteoprogenitor cells of mature human skeletal muscle tissue: an in vitro study. Bone 29:317–22CrossRefGoogle Scholar
  52. Liu H, Kemeny DM, Heng BC, Ouyang HW, Melendez AJ, Cao T (2006) The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J Immunol 176:2864–71Google Scholar
  53. Livingston T, Ducheyne P, Garino J (2002) In vivo evaluation of a bioactive scaffold for bone tissue engineering. J Biomed Mater Res 62:1–13CrossRefGoogle Scholar
  54. Livingston TL, Gordon S, Archambault M, Kadiyala S, McIntosh K, Smith A, Peter SJ (2003) Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. J Mater Sci Mater Med 14:211–8CrossRefGoogle Scholar
  55. Lu JX, Gallur A, Flautre B, Anselme K, Descamps M, Thierry B, Hardouin P (1998) Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits. J Biomed Mater Res 42:357–67CrossRefGoogle Scholar
  56. Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B (1999) Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 10:111–20CrossRefGoogle Scholar
  57. Luskey BD, Lim B, Apperley JF, Orkin SH, Williams DA (1990) Gene transfer into murine hematopoietic stem cells and bone marrow stromal cells. Ann N Y Acad Sci 612:398–406CrossRefGoogle Scholar
  58. Mankani MH, Kuznetsov SA, Fowler B, Kingman A, Robey PG (2001) In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotechnol Bioeng 72:96–107CrossRefGoogle Scholar
  59. Marcacci M, Kon E, Zaffagnini S, Giardino R, Rocca M, Corsi A, Benvenuti A, Bianco P, Quarto R, Martin I, Muraglia A, Cancedda R (1999) Reconstruction of extensive long-bone defects in sheep using porous hydroxyapatite sponges. Calcif Tissue Int 64:83–90CrossRefGoogle Scholar
  60. Marcacci M, Kon E, Zaffagnini S, Vascellari A, Neri MP, Iacono F (2003) New cell-based technologies in bone and cartilage tissue engineering. I. Bone reconstruction. Chir Organi Mov 88:33–42Google Scholar
  61. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R (2006) Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27:3230–7CrossRefGoogle Scholar
  62. Movassaghi K, Ver Halen J, Ganchi P, Amin-Hanjani S, Mesa J, Yaremchuk MJ (2006) Cranioplasty with subcutaneously preserved autologous bone grafts. Plast Reconstr Surg 117:202–6CrossRefGoogle Scholar
  63. Muraglia A, Martin I, Cancedda R, Quarto R (1998) A nude mouse model for human bone formation in unloaded conditions. Bone 22:131S–134SCrossRefGoogle Scholar
  64. Navarro M, del Valle S, Martinez S, Zeppetelli S, Ambrosio L, Planell JA, Ginebra MP (2004) New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials 25:4233–41CrossRefGoogle Scholar
  65. Norman-Taylor FH, Santori N, Villar RN (1997) The trouble with bone allograft. BMJ 315:498CrossRefGoogle Scholar
  66. Noth U, Schupp K, Heymer A, Kall S, Jakob F, Schutze N, Baumann B, Barthel T, Eulert J, Hendrich C (2005) Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Cytotherapy 7:447–55CrossRefGoogle Scholar
  67. Olszewski WL (2004) Stem cells of the human skin epithelium–can they be isolated and resume function as single-cells transplanted into recipient skin defects? Ann Transplant. 9:34–6Google Scholar
  68. Otteson DC, Hitchcock PF (2003) Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vision Res 43:927–36CrossRefGoogle Scholar
  69. Partridge K, Yang X, Clarke NM, Okubo Y, Bessho K, Sebald W, Howdle SM, Shakesheff KM, Oreffo RO (2002) Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds. Biochem Biophys Res Commun 292:144–52CrossRefGoogle Scholar
  70. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–63CrossRefGoogle Scholar
  71. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–6CrossRefGoogle Scholar
  72. Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–6CrossRefGoogle Scholar
  73. Rasmusson I (2006) Immune modulation by mesenchymal stem cells. Exp Cell Res 312:2169–79CrossRefGoogle Scholar
  74. Reh TA, Fischer (2001) Stem cells in the vertebrate retina. Brain Behav Evol 58:296–305CrossRefGoogle Scholar
  75. Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, Hotta T (2005) Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine 30:2379–87CrossRefGoogle Scholar
  76. Schantz JT, Hutmacher DW, Chim H, Ng KW, Lim TC, Teoh SH (2002) Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology. Cell Transplant 11:125–38Google Scholar
  77. Seiler JG 3rd, Johnson J (2000) Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9:91–7Google Scholar
  78. Sudres M, Norol F, Trenado A, Gregoire S, Charlotte F, Levacher B, Lataillade JJ, Bourin P, Holy X, Vernant JP, Klatzmann D, Cohen JL (2006) Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol 176:7761–7Google Scholar
  79. Sutherland AG, Raafat A, Yates P, Hutchison JD (1997) Infection associated with the use of allograft bone from the north east Scotland Bone Bank. J Hosp Infect 35:215–22CrossRefGoogle Scholar
  80. Sykova E, Jendelova P, Urdzikova L, Lesny P, Hejcl A (2006) Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cell Mol Neurobiol 26(7–8):1113–29Google Scholar
  81. Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J (2001) Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 344:1511–4CrossRefGoogle Scholar
  82. Zarate-Kalfopulos B, Reyes-Sanchez A (2006) Bone grafts in orthopedic surgery. Cir Cir 74:217–22Google Scholar
  83. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–28CrossRefGoogle Scholar
  84. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Advanced Biotechnology Center, Genova, Italy; Department of Communication, Computer and System SciencesItaly

Personalised recommendations