Skip to main content

Clinical Applications of Bone Tissue Engineering

  • Chapter
  • First Online:
Strategies in Regenerative Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–22

    Article  CAS  Google Scholar 

  • Alison MR, Brittan M, Lovell MJ, Wright NA (2006) Markers of adult tissue-based stem cells. Handb Exp Pharmacol 174:185–227. Review

    Google Scholar 

  • Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 28:707–15

    Article  CAS  Google Scholar 

  • Banfi A, Bianchi G, Notaro R, Luzzatto L, Cancedda R, Quarto R (2002) Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells. Tissue Eng 8:901–10

    Article  CAS  Google Scholar 

  • Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20:1055–60

    Article  CAS  Google Scholar 

  • Bianco P, Gehron Robey P (2000) Marrow stromal stem cells. J Clin Invest 105:1663–8

    Article  CAS  Google Scholar 

  • Boheler KR (2004) Functional markers and the “homogeneity” of human mesenchymal stem cells. J Physiol 554(Pt3):592

    Article  CAS  Google Scholar 

  • Bosch P, Musgrave DS, Lee JY, Cummins J, Shuler T, Ghivizzani TC, Evans T, Robbins TD, Huard (2000) Osteoprogenitor cells within skeletal muscle. J Orthop Res 18:933–44

    Article  CAS  Google Scholar 

  • Boyde A, CorsI A, Quarto R, Cancedda R, Bianco P (1999) Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone 24:579–89

    Article  CAS  Google Scholar 

  • Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80:985–96

    CAS  Google Scholar 

  • Caterson EJ, Nesti LJ, Albert T, Danielson K, Tuan R (2001) Application of mesenchymal stem cells in the regeneration of musculoskeletal tissues. Medscape General. Medicine 3(1), E1. Review

    Google Scholar 

  • Chacko DM, Das AV, Zhao X, James J, Bhattacharya S, Ahmad I (2003) Transplantation of ocular stem cells: the role of injury in incorporation and differentiation of grafted cells in the retina. Vision Res. 43:937–46

    Article  Google Scholar 

  • Chailakhan RK, Lalykina KS (1969) Spontaneous and induced differentiation of osseous tissue in a population of fibroblast-like cells obtained from long-term monolayer cultures of bone marrow and spleen. Dokl Akad Nauk SSSR. 187:473–5

    CAS  Google Scholar 

  • Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW (2000) Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials. 21:1291–8

    Article  CAS  Google Scholar 

  • Collett GD, Canfield AE (2005) Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res. 96:930–8

    Article  CAS  Google Scholar 

  • De Oliveira JF, De Aguiar PF, Rossi AM, Soares GA (2003) Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds. Artif Organs. 27:406–11

    Article  Google Scholar 

  • Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–44

    Article  CAS  Google Scholar 

  • Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–38

    Article  CAS  Google Scholar 

  • Dong J, Kojima H, Uemura T, Kikuchi M, Tateishi T, Tanaka J (2001) In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells. J Biomed Mater Res 57:208–16

    Article  CAS  Google Scholar 

  • Dong J, Uemura T, Shirasaki Y, Tateishi T (2002) Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 23:4493–502

    Article  CAS  Google Scholar 

  • Dyce PW, Zhu H, Craig J, Li J (2004) Stem cells with multilineage potential derived from porcine skin. Biochem Biophys Res Commun 316:651–8

    Article  CAS  Google Scholar 

  • El-Ghannam A (2005) Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices 2:87–101

    Article  Google Scholar 

  • Erbe EM, Marx JG, Clineff TD, Bellincampi LD (2001) Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J (10 Suppl) 2:S141–6

    Google Scholar 

  • Flautre B, Anselme K, Delecourt C, Lu J, Hardouin P, Descamps M (1999) Histological aspects in bone regeneration of an association with porous hydroxyapatite and bone marrow cells. J Mater Sci Mater Med 10:811–4

    Article  CAS  Google Scholar 

  • Friedenstein AJ, Lalykina KS (1972) Thymus cells are inducible to osteogenesis. Eur J Immunol 2:602–3

    Article  CAS  Google Scholar 

  • Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–90

    CAS  Google Scholar 

  • Garbossa D, Fontanella M, Fronda C, Benevello C, Muraca G, Ducati A, Vercelli A (2006) New strategies for repairing the injured spinal cord: the role of stem cells. Neurol Res 28:500–4

    Article  CAS  Google Scholar 

  • Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 19:133–9

    Article  CAS  Google Scholar 

  • Gauthier O, Muller R, von Stechow D, Lamy B, Weiss P, Bouler JM, Aguado E, Daculsi G (2005) In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials 26:5444–53

    Article  CAS  Google Scholar 

  • Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3:1–8

    Google Scholar 

  • Ge Z, Goh JC, Lee EH (2005) The effects of bone marrow-derived mesenchymal stem cells and fascia wrap application to anterior cruciate ligament tissue engineering. Cell Transplant 14:763–73

    Article  Google Scholar 

  • Guasch G (2006) Epithelial stem cells in the skin. Med Sci (Paris) 22:710–2

    Google Scholar 

  • Hokugo A, Sawada Y, Sugimoto K, Fukuda A, Mushimoto K, Morita S, Tabata Y (2006) Preparation of prefabricated vascularized bone graft with neoangiogenesis by combination of autologous tissue and biodegradable materials. Int J Oral Maxillofac Surg 35(11):1034–40

    Google Scholar 

  • Huang JI, Beanes SR, Zhu M, Lorenz HP, Hedrick MH, Benhaim P (2002) Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast Reconstr Surg 109:1033–41; discussion 1042–3

    Article  Google Scholar 

  • Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32:414–25.

    Article  CAS  Google Scholar 

  • Johnston, N (2004) Skin stem cells. Drug Discov Today 9:994

    Article  Google Scholar 

  • Jorgensen C, Noel D, Apparailly F, Sany J (2001) Stem cells for repair of cartilage and bone: the next challenge in osteoarthritis and rheumatoid arthritis. Ann Rheum Dis 60:305–9

    Article  CAS  Google Scholar 

  • Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–34

    Article  CAS  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–91

    Article  CAS  Google Scholar 

  • Kim DS, Cho HJ, Choi HR, Kwon SB, Park KC (2004) Isolation of human epidermal stem cells by adherence and the reconstruction of skin equivalents. Cell Mol Life Sci 61:2774–81

    Article  CAS  Google Scholar 

  • Klein S, Svendsen CN (2005) Stem cells in the injured spinal cord: reducing the pain and increasing the gain. Nat Neurosci 8:259–60

    Article  CAS  Google Scholar 

  • Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon's point of view. J Cell Mol Med 10:7–19

    Article  CAS  Google Scholar 

  • Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–37

    Article  CAS  Google Scholar 

  • Krampera M, Pizzolo G, Aprili G, Franchini M (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–83

    Article  CAS  Google Scholar 

  • Kumta SM, Kendal N, Lee YL, Panozzo A, Leung PC, Chow TC (1997) Bacterial colonization of bone allografts related to increased interval between death and procurement: an experimental study in rats. Arch Orthop Trauma Surg 116:496–7

    Article  CAS  Google Scholar 

  • Kurz LT, Garfin SR, Booth RE Jr (1989) Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine 14:1324–31

    Article  CAS  Google Scholar 

  • Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J Cell Biol 153:1133–40

    Article  CAS  Google Scholar 

  • Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5:485–9

    Article  CAS  Google Scholar 

  • Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–41

    Article  Google Scholar 

  • Leung VY, Chan D, Cheung KM (2006) Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J (15 Suppl) 15:406–13

    Article  Google Scholar 

  • Levy MM, Joyner CJ, Virdi AS, Reed A, Triffitt JT, Simpson AH, Kenwright J, Stein H, Francis MJ (2001) Osteoprogenitor cells of mature human skeletal muscle tissue: an in vitro study. Bone 29:317–22

    Article  CAS  Google Scholar 

  • Liu H, Kemeny DM, Heng BC, Ouyang HW, Melendez AJ, Cao T (2006) The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J Immunol 176:2864–71

    CAS  Google Scholar 

  • Livingston T, Ducheyne P, Garino J (2002) In vivo evaluation of a bioactive scaffold for bone tissue engineering. J Biomed Mater Res 62:1–13

    Article  CAS  Google Scholar 

  • Livingston TL, Gordon S, Archambault M, Kadiyala S, McIntosh K, Smith A, Peter SJ (2003) Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. J Mater Sci Mater Med 14:211–8

    Article  CAS  Google Scholar 

  • Lu JX, Gallur A, Flautre B, Anselme K, Descamps M, Thierry B, Hardouin P (1998) Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits. J Biomed Mater Res 42:357–67

    Article  CAS  Google Scholar 

  • Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B (1999) Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 10:111–20

    Article  CAS  Google Scholar 

  • Luskey BD, Lim B, Apperley JF, Orkin SH, Williams DA (1990) Gene transfer into murine hematopoietic stem cells and bone marrow stromal cells. Ann N Y Acad Sci 612:398–406

    Article  CAS  Google Scholar 

  • Mankani MH, Kuznetsov SA, Fowler B, Kingman A, Robey PG (2001) In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotechnol Bioeng 72:96–107

    Article  CAS  Google Scholar 

  • Marcacci M, Kon E, Zaffagnini S, Giardino R, Rocca M, Corsi A, Benvenuti A, Bianco P, Quarto R, Martin I, Muraglia A, Cancedda R (1999) Reconstruction of extensive long-bone defects in sheep using porous hydroxyapatite sponges. Calcif Tissue Int 64:83–90

    Article  CAS  Google Scholar 

  • Marcacci M, Kon E, Zaffagnini S, Vascellari A, Neri MP, Iacono F (2003) New cell-based technologies in bone and cartilage tissue engineering. I. Bone reconstruction. Chir Organi Mov 88:33–42

    CAS  Google Scholar 

  • Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R (2006) Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27:3230–7

    Article  CAS  Google Scholar 

  • Movassaghi K, Ver Halen J, Ganchi P, Amin-Hanjani S, Mesa J, Yaremchuk MJ (2006) Cranioplasty with subcutaneously preserved autologous bone grafts. Plast Reconstr Surg 117:202–6

    Article  CAS  Google Scholar 

  • Muraglia A, Martin I, Cancedda R, Quarto R (1998) A nude mouse model for human bone formation in unloaded conditions. Bone 22:131S–134S

    Article  CAS  Google Scholar 

  • Navarro M, del Valle S, Martinez S, Zeppetelli S, Ambrosio L, Planell JA, Ginebra MP (2004) New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials 25:4233–41

    Article  CAS  Google Scholar 

  • Norman-Taylor FH, Santori N, Villar RN (1997) The trouble with bone allograft. BMJ 315:498

    Article  CAS  Google Scholar 

  • Noth U, Schupp K, Heymer A, Kall S, Jakob F, Schutze N, Baumann B, Barthel T, Eulert J, Hendrich C (2005) Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Cytotherapy 7:447–55

    Article  CAS  Google Scholar 

  • Olszewski WL (2004) Stem cells of the human skin epithelium–can they be isolated and resume function as single-cells transplanted into recipient skin defects? Ann Transplant. 9:34–6

    Google Scholar 

  • Otteson DC, Hitchcock PF (2003) Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vision Res 43:927–36

    Article  CAS  Google Scholar 

  • Partridge K, Yang X, Clarke NM, Okubo Y, Bessho K, Sebald W, Howdle SM, Shakesheff KM, Oreffo RO (2002) Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds. Biochem Biophys Res Commun 292:144–52

    Article  CAS  Google Scholar 

  • Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–63

    Article  CAS  Google Scholar 

  • Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–6

    Article  CAS  Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–6

    Article  CAS  Google Scholar 

  • Rasmusson I (2006) Immune modulation by mesenchymal stem cells. Exp Cell Res 312:2169–79

    Article  CAS  Google Scholar 

  • Reh TA, Fischer (2001) Stem cells in the vertebrate retina. Brain Behav Evol 58:296–305

    Article  CAS  Google Scholar 

  • Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, Hotta T (2005) Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine 30:2379–87

    Article  Google Scholar 

  • Schantz JT, Hutmacher DW, Chim H, Ng KW, Lim TC, Teoh SH (2002) Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology. Cell Transplant 11:125–38

    Google Scholar 

  • Seiler JG 3rd, Johnson J (2000) Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9:91–7

    Google Scholar 

  • Sudres M, Norol F, Trenado A, Gregoire S, Charlotte F, Levacher B, Lataillade JJ, Bourin P, Holy X, Vernant JP, Klatzmann D, Cohen JL (2006) Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol 176:7761–7

    CAS  Google Scholar 

  • Sutherland AG, Raafat A, Yates P, Hutchison JD (1997) Infection associated with the use of allograft bone from the north east Scotland Bone Bank. J Hosp Infect 35:215–22

    Article  CAS  Google Scholar 

  • Sykova E, Jendelova P, Urdzikova L, Lesny P, Hejcl A (2006) Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cell Mol Neurobiol 26(7–8):1113–29

    Google Scholar 

  • Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J (2001) Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 344:1511–4

    Article  CAS  Google Scholar 

  • Zarate-Kalfopulos B, Reyes-Sanchez A (2006) Bone grafts in orthopedic surgery. Cir Cir 74:217–22

    Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–28

    Article  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Scaglione .

Editor information

Editors and Affiliations

Additional information

Questions/Exercises

  1. 1.

    Can the chemical composition of the scaffolds influence the cell adhesion mechanisms?

  2. 2.

    Which parameters may influence the vascularization process of the implanted graft?

  3. 3.

    Which scaffold parameter should be well controlled during its planning and development?

  4. 4.

    Which is the best porosity of engineered grafts able to guarantee an efficient in vivo bone formation?

  5. 5.

    Can suitable mechanical properties requirements influence the choice of the scaffold to be implanted, in terms of its chemical composition?

  6. 6.

    Which parameters may influence the in vivo degradation process of the implanted graft?

  7. 7.

    Can the internal architecture of the scaffolds influence the cell migration mechanisms and the in vivo matrix deposition kinetic?

  8. 8.

    Can different clinical settings (maxillo-facial, orthopedic surgery, etc.) influence the choice of the bone graft to be implanted?

  9. 9.

    Can bone defect size influence the choice of the bone graft to be implanted, in terms of its chemical composition and/or internal architecture?

  10. 10.

    Has the use of osteogenic stem cells still displayed some limitations for their wide use to regenerate skeletal tissues?

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Scaglione, S., Quarto, R. (2009). Clinical Applications of Bone Tissue Engineering. In: Santin, M. (eds) Strategies in Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74660-9_15

Download citation

Publish with us

Policies and ethics