Skip to main content

Therapeutic Strategies in Ocular Tissue Regeneration: The Role of Stem Cells

  • Chapter
  • First Online:
Strategies in Regenerative Medicine
  • 951 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akagi T, et al. (2004) Otx2 homeobox gene induces photoreceptor-specific phenotypes in cells derived from adult iris and ciliary tissue. Invest Ophthalmol Vis Sci. 45:4570–5

    Article  Google Scholar 

  • Alexiades MR, Cepko CL (1997) Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny. Development 124:1119–31

    CAS  Google Scholar 

  • Asahara T, et al. (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J. 18:3964–72

    Article  CAS  Google Scholar 

  • Ashery-Padan R, Gruss P (2001) Pax6 lights-up the way for eye development. Curr. Opin. Cell Biol. 13:706–14

    CAS  Google Scholar 

  • Baldwin AS, Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 14:649–83

    Article  CAS  Google Scholar 

  • Bishop AE, LD Buttery, Polak JM (2002) Embryonic stem cells. J Pathol. 197:424–9

    Google Scholar 

  • Bizzozero G (1894) An address on growth and regeneration of organism. Br Med J. 1:728–732

    Article  Google Scholar 

  • Blau HM, TR Brazelton, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–41

    Google Scholar 

  • Boudreau N, Bissell MJ (1998) Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr Opin Cell Biol. 10:640–6

    Article  CAS  Google Scholar 

  • Brustle O, et al. (1997) In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci USA 94:14809–14.

    Article  CAS  Google Scholar 

  • Brustle O, et al. (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–6

    Article  CAS  Google Scholar 

  • Buschke W (1949) Morphologic changes in cells of corneal epithelium in wound healing. Arch Ophthalmol 41:306–316

    Article  CAS  Google Scholar 

  • Chiou SH, et al. (2005) A novel in vitro retinal differentiation model by co-culturing adult human bone marrow stem cells with retinal pigmented epithelium cells. Biochem Biophys Res Commun. 326:578–85

    Article  CAS  Google Scholar 

  • Colville D, et al. (2000) Absence of ocular manifestations in autosomal dominant Alport syndrome associated with haematological abnormalties. Ophthalmic Genet. 21:217–25

    CAS  Google Scholar 

  • Cotsarelis G, et al. (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–9

    Article  CAS  Google Scholar 

  • Davanger M, Evensen A (1971) Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229:560–1

    Article  CAS  Google Scholar 

  • Davis J, et al. (2003) Requirement for Pax6 in corneal morphogenesis: a role in adhesion. J Cell Sci. 116:2157–67

    Article  CAS  Google Scholar 

  • Dayton L (2002a) Biomedical research. Australia pushes stem cell advantage. Science 296:1779–81

    Google Scholar 

  • Dayton L (2002b) Embryonic stem cells. Australian agreement allows new lines. Science 296:238

    Google Scholar 

  • Dua HS (1995) Stem cells of the ocular surface: scientific principles and clinical applications. Br J Ophthalmol 79:968–9

    Article  CAS  Google Scholar 

  • Dursun D, et al. (2001) Treatment of recalcitrant recurrent corneal erosions with inhibitors of matrix metalloproteinase-9, doxycycline and corticosteroids. Am J Ophthalmol. 132:8–13

    Article  CAS  Google Scholar 

  • Ebato B, Friend J, Thoft RA (1987) Comparison of central and peripheral human corneal epithelium in tissue culture. Invest Ophthalmol Vis Sci. 28:1450–6

    CAS  Google Scholar 

  • Espinosa-Heidmann DG, et al. (2003) Bone marrow-derived progenitor cells contribute to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 44:4914–9

    Article  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–6

    Article  CAS  Google Scholar 

  • Ferraris C, et al. (2000) Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development 127:5487–95

    CAS  Google Scholar 

  • Fini ME, Cook JR, Mohan R (1998) Proteolytic mechanisms in corneal ulceration and repair. Arch Dermatol Res. 290:S12–23

    Article  Google Scholar 

  • Fischer AJ (2005) Neural regeneration in the chick retina. Prog Retin Eye Res. 24:161–82

    Article  Google Scholar 

  • Garrana RM, et al. (1999) Matrix metalloproteinases in epithelia from human recurrent corneal erosion. Invest Ophthalmol Vis Sci. 40:1266–70

    CAS  Google Scholar 

  • Gillett NA, et al. (1993) Leukemia inhibitory factor expression in human carotid plaques: possible mechanism for inhibition of large vessel endothelial regrowth. Growth Fact. 9:301–5

    Article  CAS  Google Scholar 

  • Girard MT, Matsubara M, Fini ME (1991) Transforming growth factor-beta and interleukin-1 modulate metalloproteinase expression by corneal stromal cells. Invest Ophthalmol Vis Sci. 32:2441–54

    CAS  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 86:494–501

    Article  CAS  Google Scholar 

  • Hall PA (1989) What are stem cells and how are they controlled? J Pathol. 158:275–7

    Article  CAS  Google Scholar 

  • Hanson IM, et al. (1994) Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters' anomaly. Nat Genet. 6:168–73

    Article  CAS  Google Scholar 

  • Hitchcock PF, et al. (1996) Antibodies against Pax6 immunostain amacrine and ganglion cells and neuronal progenitors, but not rod precursors, in the normal and regenerating retina of the goldfish. J Neurobiol. 29:399–413

    Article  CAS  Google Scholar 

  • Hovanesian JA, Shah SS, Maloney RK (2001) Symptoms of dry eye and recurrent erosion syndrome after refractive surgery. J Cataract Refract Surg. 27:577–84

    Article  CAS  Google Scholar 

  • Jordan T, et al. (1992) The human PAX6 gene is mutated in two patients with aniridia. Nat Genet. 1:328–32

    Article  CAS  Google Scholar 

  • Kenyon KR (1989) Limbal autograft transplantation for chemical and thermal burns. Dev Ophthalmol. 18:53–8

    CAS  Google Scholar 

  • Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 96:709–22; discussion 722–3

    CAS  Google Scholar 

  • Klug MG, et al. (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest. 98:216–24

    Article  CAS  Google Scholar 

  • Koroma B, Tseng S, Sundin OH (1997) Expression of the PAX6 gene in the anterior segment in human aniridia and Sey mouse model. Investigative Ophthalmol Vis Sci. 38:4405 (abstract).

    Google Scholar 

  • Krause DS, et al. (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–77

    Article  CAS  Google Scholar 

  • Kruse FE (1994) Stem cells and corneal epithelial regeneration. Eye 8:170–83

    Article  Google Scholar 

  • Kruse FE, Tseng SC (1992) Proliferative and differentiative response of corneal and limbal epithelium to extracellular calcium in serum-free clonal cultures. J Cell Physiol. 151:347–60

    Article  CAS  Google Scholar 

  • Kruse FE, Volcker HE (1997) Stem cells, wound healing, growth factors, and angiogenesis in the cornea. Curr Opin Ophthalmol. 8:46–54

    Article  CAS  Google Scholar 

  • Lajtha LG (1979) Stem cell concepts. Differentiation 14:23–34

    Article  CAS  Google Scholar 

  • Lugo M, Putong PB (1984) Metaplasia. An overview. Arch Pathol Lab Med. 108:185–9

    CAS  Google Scholar 

  • MacLaren RE, et al. (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–7

    Article  CAS  Google Scholar 

  • Marquardt T, Gruss P (2002) Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci. 25:32–8

    Article  CAS  Google Scholar 

  • Marquardt T, et al. (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55

    Article  CAS  Google Scholar 

  • Marquardt T (2003) Transcriptional control of neuronal diversification in the retina. Prog Retin Eye Res. 22:567–77

    Article  CAS  Google Scholar 

  • Maumenee A, Scholz R (1948) Histopathology of the ocular lesions produced by the sulphur and nitrogen mustards. Johns Hopkins Hospital Bull. 82:121–147

    CAS  Google Scholar 

  • Mayer EJ, et al. (2005) Neural progenitor cells from postmortem adult human retina. Br J Ophthalmol. 89:102–6

    Article  CAS  Google Scholar 

  • McDevitt DS (1989) Transdifferentiation in animals. A model for differentiation control. Dev Biol. (NY 1985). 6:149–73

    CAS  Google Scholar 

  • Mitchell KE, et al. (2003) Matrix cells from Wharton's jelly form neurons and glia. Stem Cells. 21:50–60

    Article  CAS  Google Scholar 

  • Mohan RR, et al. (1997) Apoptosis in the cornea: further characterization of Fas/Fas ligand system. Exp Eye Res 65:575–89

    Article  CAS  Google Scholar 

  • Mohan R, et al. (2002) Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration. J Biol Chem. 277:2065–72

    Article  CAS  Google Scholar 

  • O'Guin WM, et al. (1987) Patterns of keratin expression define distinct pathways of epithelial development and differentiation. Curr Top Dev Biol. 22:97–125

    Article  Google Scholar 

  • Pearton DJ, Yang Y, Dhouailly D (2005) Trans differentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals. Proc Natl Acad Sci USA 102:3714–9

    Article  CAS  Google Scholar 

  • Pellegrini G, et al. (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol. 145:769–82

    Article  CAS  Google Scholar 

  • Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–20

    CAS  Google Scholar 

  • Ramaesh K, Dhillon B (2003) Ex vivo expansion of corneal limbal epithelial/stem cells for corneal surface reconstruction. Eur J Ophthalmol. 13:515–24

    CAS  Google Scholar 

  • Reubinoff BE, et al. (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol. 19:1134–40

    Article  CAS  Google Scholar 

  • Schnieke AE, et al. (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130–3

    Article  CAS  Google Scholar 

  • Simpson TI, Price DJ (2002) Pax6; a pleiotropic player in development. Bioessays 24:1041–51

    Article  CAS  Google Scholar 

  • Sivak JM, Fini M (2002a) MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res. 21:1–14

    Google Scholar 

  • Sivak J Fini M (2002b) Pax-6 Deficient Mice Show Altered Phenotype and Gene Expression During Corneal Re-Epithelialization. ARVO poster. Presentation Number:4197.

    Google Scholar 

  • Sivak JM, et al. (2000) Pax-6 expression and activity are induced in the reepithelializing cornea and control activity of the transcriptional promoter for matrix metalloproteinase gelatinase B. Dev Biol. 222:41–54

    Article  CAS  Google Scholar 

  • Sobrin L, et al. (2000) Regulation of MMP-9 activity in human tear fluid and corneal epithelial culture supernatant. Invest Ophthalmol Vis Sci. 41:1703–9

    CAS  Google Scholar 

  • Soria B, et al. (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49:157–62

    Article  CAS  Google Scholar 

  • Spence JR, et al. (2004) The hedgehog pathway is a modulator of retina regeneration. Development 131:4607–21

    Article  CAS  Google Scholar 

  • Stoykova A, et al. (1997) Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 124:3765–77

    CAS  Google Scholar 

  • Thomson JA, et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–7

    Article  CAS  Google Scholar 

  • Tropepe V, et al. (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–6

    Article  CAS  Google Scholar 

  • Tsai RJ, Tseng SC (1995) Effect of stromal inflammation on the outcome of limbal transplantation for corneal surface reconstruction. Cornea 14:439–49

    Article  CAS  Google Scholar 

  • Tsai R, Lin-Min, Chen J-K (2000) Reconstruction of damaged corneas by transplanation of autologous limbal epithelial cells. New Engl J Med. 343:86–94

    Google Scholar 

  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–30

    Article  CAS  Google Scholar 

  • Whikehart DR, et al. (2005) Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol Vis. 11:816–24

    CAS  Google Scholar 

  • Wiles MV, Keller G (1991) Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111:259–67

    CAS  Google Scholar 

  • Wilson SE, et al. (2001) The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res. 20:625–37

    Article  CAS  Google Scholar 

  • Wong TT, et al. (2002) Matrix metalloproteinases in disease and repair processes in the anterior segment. Surv Ophthalmol. 47:239–56

    Article  Google Scholar 

  • Zhang SC, et al. (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 19:1129–33

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Questions/Exercises

  1. 1.

    Explain the role played by the main eye component in the vision process

  2. 2.

    List the main locations of stem cells in eye tissues.

  3. 3.

    Give an example of a major eye pathology and discuss its mechanism.

  4. 4.

    What is the cell biology mechanisms linking inflammatory response to cell transdifferentiation?

  5. 5.

    Describe the role of corneal epithelium in the tissue regeneration.

  6. 6.

    Critically discuss the treatments to prevent ocular tissue damages in the light of inflammatory response and tissue remodeling biochemistry.

  7. 7.

    What are the main limbal transplantation methods and which is the role played by stem cells in their clinical efficacy?

  8. 8.

    Which are the main substrates for ex vivo limbal cell expansion? Why these substrates are preferred for this process?

  9. 9.

    Describe the main clinical treatments for macula degeneration and compare their efficacy.

  10. 10.

    Critically discuss the main strategies for eye gene therapy.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ramaesh, K., Stone, N., Dhillon, B. (2009). Therapeutic Strategies in Ocular Tissue Regeneration: The Role of Stem Cells. In: Santin, M. (eds) Strategies in Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74660-9_11

Download citation

Publish with us

Policies and ethics