Skip to main content

Peripheral Nerve Injury, Repair, and Regeneration

  • Chapter
  • First Online:
Strategies in Regenerative Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akun T, Najafi K, Bradley RM (1994) A micromachined silicon sieve electrode for nerve regeneration applications. IEEE Trans Biomed Eng 41:305–313

    Article  Google Scholar 

  • Al-Majed AA, Neumann CM, Brushart TM, Gordon T (2000) Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci 20: 2602–2608

    CAS  Google Scholar 

  • Al-Majed, AA, Tam, SL, Gordon T (2004) Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol 24:379–402

    Article  CAS  Google Scholar 

  • Anglin E, Schwartz M, Ng V, Perelman L, Sailor M (2004) Engineering the chemistry and nanostructure of porous silicon fabry-pérot films for loading and release of a steroid. Langmuir 20:11264–11269

    Article  CAS  Google Scholar 

  • Archibald SJ, Krarup C, Shefner J, Li S-T, Madison RD (1991) A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol 306:685–696

    Article  CAS  Google Scholar 

  • Archibald SJ, Shefner J, Krarup C, Madison RD (1995) Monkey median nerve repaired by nerve graft or collagen nerve guide tube. J Neurosci 15:4109–4123

    CAS  Google Scholar 

  • Baffour R, Achanta K, Kaufman J, Berman J, Garb JL, Rhee S, Friedmann P (1995) Synergistic effect of basic fibroblast growth factor and methylprednisolone on neurologic function after experimental spinal cord injury. J Neurosurg 83:105–110

    Article  CAS  Google Scholar 

  • Belkas JS, Shoichet MS, Midha R (2004) Peripheral nerve regeneration through guidance tubes. Neurol Res 26:151–160

    Article  Google Scholar 

  • Bellamkonda RV (2006) Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials 27:3515–3518

    CAS  Google Scholar 

  • Bergveld P, Wiersma J. et al. (1976) Extracellular potential recordings by means of field effect transistor without gate metal, called OSFET. IEEE Trans Biomed Eng 23: 136–144

    Article  CAS  Google Scholar 

  • Bertelli JA, Ghizoni MF (2004) Reconstruction of C5 and C6 brachial plexus avulsion injury by multiple nerve transfers: spinal accessory to suprascapular, ulnar fascicles to biceps branch, and triceps long or lateral head branch to axillary nerve. J Hand Surg 29:131–139

    Article  Google Scholar 

  • Borgens R, Robinson K, Vanable jr J, McGinnis M (1989) Electric fields in vertebrate repair. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Borgens R, Blight A, McGinnis M (1990) Functional recovery after spinal cord hemisection in guinea pigs: The effects of applied electric fields. J Compar Neurol 296: 634–653

    Article  CAS  Google Scholar 

  • Borgens R, Toombs J, Blight A, McGinnis M, Bauer M, Widmer W, Cook jr J (1993) Effects of applied electric fields on clinical cases of complete paraplegia in dogs. Restor Neurol Neurosci 5:305–322

    CAS  Google Scholar 

  • Borgens RB, Bohnert DM (1997) The responses of mammalian spinal axons to an applied dc voltage gradient. Experimental Neurology 145:376–389

    Article  CAS  Google Scholar 

  • Bregman BS, McAtee M, Dai HD, Kuhn PL (1997) Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 148:475–494

    Article  CAS  Google Scholar 

  • Brushart TM, Hoffman PN, Royall RM, Murinson BB, Witzel C, Gordon T (2002) Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci 22:6631–6638

    CAS  Google Scholar 

  • Brushart TM, Jari R, Verge V, Rohde C, Gordon T (2005) Electrical stimulation restores the specificity of sensory axon regeneration. Exp Neurol 194:221–229

    Article  Google Scholar 

  • Campbell P, et al. (1989) A chronic intracortical electrode array: preliminary results. J Biomed Mater Res 23:245–259

    CAS  Google Scholar 

  • Chalfoun C, Wirth G, Evans G (2006) Tissue engineered nerve constructs: where do we stand? J Cell Molecular Med 10:309–317

    Article  CAS  Google Scholar 

  • Chaudhry V, Glass JD, Griffin JW (1992) Wallerian degeneration in peripheral nerve disease. Neurologic Clinics 10:613–627

    CAS  Google Scholar 

  • Chen YY, McDonald D, Cheng C, Magnowski B, Durand J, Zochodne DW (2005) Axon and Schwann cell partnership during nerve regrowth. J Neuropathol Exp Neurol 64:613–622

    Google Scholar 

  • Cheng B, Chen Z (2002) Fabricating autologous tissue to engineer artificial nerve. Microsurgery 22:133–137

    Article  Google Scholar 

  • Cho ST, Cromack K, Jara-Almonte J, VerLee DJ (2005) Medicine delivery system. In: US006,953,455), vol. October 11.

    Google Scholar 

  • Clark P, Britland S, Connolly P (1993) Growth cone guidance and neuron morphology on micropatterned laminin surfaces. Journal of Cell Science 105:203–212

    CAS  Google Scholar 

  • Dahlin LB, Lundborg G (1998) Experimental nerve grafting: towards future solutions of a clinical problem 165–173

    Google Scholar 

  • Deumens R, Koopmans GC, Honig WMM, Hamers FPT, Maquet V, Jerome R, Steinbusch HWM, Joosten EAJ (2006) Olfactory ensheathing cells, olfactory nerve fibroblasts and biomatrices to promote long-distance axon regrowth and functional recovery in the dorsally hemisected adult rat spinal cord. Experimental Neurology 200:89–8103

    Article  CAS  Google Scholar 

  • Diao E, Vannuyen T (2000) Techniques for primary nerve repair. Hand Clinics 16:53–66

    CAS  Google Scholar 

  • Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Molecular Neurobiology 14:67–116

    Article  CAS  Google Scholar 

  • Gage FH, Ray J, Fisher LJ (1995) Isolation, Characterization, and use of Stem Cells from the CNS. Annual Review of Neuroscience 18:159–192

    Article  CAS  Google Scholar 

  • Gibbels E (1989) Morphometry of unmyelinated nerve fibers. Clinical Neuropathology 8:179–187

    CAS  Google Scholar 

  • Gordon T, Sulaiman O, Boyd JG (2003) Experimental strategies to promote functional recovery after peripheral nerve injuries. Journal of the peripheral nervous system 8:236–250

    Article  Google Scholar 

  • Hinkle L, McCaig C, Robinson K (1981) The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. The Journal of Physiology (London) 313:121–135

    Google Scholar 

  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171

    Article  CAS  Google Scholar 

  • Hou S-Y, Zhang H-Y, Quan D-P, Liu X-L, Zhu J-K (2006) Tissue-engineered peripheral nerve grafting by differentiated bone marrow stromal cells. Neuroscience 140:101–110

    Article  CAS  Google Scholar 

  • Hou Z, Xu Z (2002) Nerve transfer for treatment of brachial plexus injury: comparison study between the transfer of partial median and ulnar nerves and that of phrenic and spinal accessary nerves. Chinese Journal of Traumatology 5:263–266

    Google Scholar 

  • Hudson AR, Morris J, Weddell G, Drury A (1972) Peripheral nerve autografts. The Journal of Surgery Research 12:267–274

    Article  CAS  Google Scholar 

  • Johansson F, Kanje M, Eriksson C, Wallman L (2005) Guidance of neurons on porous patterned silicon: is pore size important? Physica Status Solidi (C) 2:3258–3262

    Article  CAS  Google Scholar 

  • Kajitani I, Murakawa M, Nishikawa D, Yokoi H, Kajihara N, Iwata M, Keymeulen D, Sakanashi H, Higuchi T (1999) An evolvable hardware chip for prosthetic hand controller. MicroNeuro '99. Proceedings of the Seventh International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems, 1999 pp. 179–186

    Google Scholar 

  • Kaul R, Syed N, Fromherz P (2004) Neuron-semiconductor chip with chemical synapse between identified neurons. Physical Review Letters 92: 038102

    Article  Google Scholar 

  • Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H (2006a) Peripheral nerve tissue engineering: Autologous Schwann cells vs. transdifferentiated mesechymal stem cells. Tissue Engineering 12:1454–1465

    Google Scholar 

  • Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H (2006b) Peripheral Nerve Tissue Engineering: Autologous Schwann Cells vs. Transdifferentiated Mesenchymal Stem Cells. Tissue Engineering 12:1451–1465

    Google Scholar 

  • Kelsey JL, Praemer A, Nelson L, Felberg A, Rice LM (1997) Upper extremity disorders. Frequency, impact, and cost. Churchill Livingstone Inc., New York.

    Google Scholar 

  • Kline D, Hudson A (1995) Vertebral artery compression. J Neurosurg 83:759

    CAS  Google Scholar 

  • Kovacs, GTA, Storment CW, Rosen JM (1992) Regeneration microelectrode array for peripheral nerve recording and stimulation. IEEE Transactions on Biomedical Engineering. 39:893–902

    Article  CAS  Google Scholar 

  • Kriesel MS (2002) Fluid delivery device with heat activated energy source. US006 485:462

    Google Scholar 

  • Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ (2002) Neural Crest Stem Cells Persist in the Adult Gut but Undergo Changes in Self-Renewal, Neuronal Subtype Potential, and Factor Responsiveness. Neuron 35:657–669

    Article  CAS  Google Scholar 

  • Lee AC, Yu VM, Lowe JB, Brenner MJ, Hunter DA, Mackinnon SE, Sakiyama-Elbert SE (2003) Controlled release of nerve growth factor enhances sciatic nerve regeneration. Experimental Neurology 295–303

    Google Scholar 

  • Longo FM, Manthorpe M, Skaper SD, Lundborg G, Varon S (1983a) Neuronotrophic activities accumulate in vivo within silicone nerve regeneration chambers. Brain Research 109–117

    Google Scholar 

  • Longo FM, Skaper SD, Manthorpe M, Williams LR, Lundborg G (1983b) Temporal changes of neuronotrophic activities accumulating in vivo within nerve regeneration chambers. Experimental Neurology 81:756–769

    Google Scholar 

  • Longo FM, Hayman EG, Davis GE, Ruoslahti E, Engvall E, Manthorpe M, Varon S (1984) Neurite-promoting factors and extracellular matrix components accumulating in vivo within nerve regneration chambers. Brain Research.

    Google Scholar 

  • Lundborg G (2004) Nerve injury and repair: regeneration, reconstruction, and cortical remodeling. Elsevier, Philadelphia.

    Google Scholar 

  • Lundborg G, Danielsen N (1991) Injury, degeneration, and regeneration. Gelberman RH (Ed.), Operative Nerve Repair and Reconstruction. J.P. Lippincott, New York.

    Google Scholar 

  • Lundborg G, Rosen B, Abrahamson SO, Dahlin L, Danielsen N (1994) Tubular repair of the median nerve in the human forearm. Preliminary findings. The Journal of Hand Surgery (British and European Volume) 19:273–276

    Article  CAS  Google Scholar 

  • Marshall C, Lu C, Winstead W, Zhang X, Xiao M, Harding G, Klueber K, Roisen F (2006) The therapeutic potential of human olfactory-derived stem cells. Histology and Histopathology 21:633–643

    CAS  Google Scholar 

  • Martini R (1994) Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. Journal of Neurocytology 23:1–28

    Article  CAS  Google Scholar 

  • Matsuyama T, Mackay MS, Midha R (2000) Peripheral nerve repair and grafting techniques: a review. Neurol Med Chir (Tokyo) 40:187–199

    Article  CAS  Google Scholar 

  • McAllister RMR, Gilbert SEA, Calder JS, Smith PJ (1996) The epidemiology and management of upper limb peripheral nerve injuries in modern practice. The Journal of Hand Surgery (British and European Volume) 21B:4–13

    Google Scholar 

  • McCaig CD, Allan DW, Erskine L, Rajnicek AM, Stewart R (1994) Growing Nerves in an Electric Field. Neuroprotocols 4:134–141

    Article  Google Scholar 

  • McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiological Reviews 85:943–979

    Article  Google Scholar 

  • McDonald DS, Zochodne DW (2003) An injectable nerve regeneration chamber for studies of unstable soluble growth factors. J Neurosci Methods 122:171–178

    Article  CAS  Google Scholar 

  • McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD (2006) Skin-Derived Precursors Generate Myelinating Schwann Cells for the Injured and Dysmyelinated Nervous System. J Neurosci 26:6651–6660

    Article  CAS  Google Scholar 

  • Meek MF, M.D, Coert JH, M.D (2002) Clinical Use of Nerve Conduits in Peripheral-Nerve Repair: Review of the Literature. Journal of Reconstructive Microsurgery 097–110

    Google Scholar 

  • Merle M, Dellon AL, Campbell JN, Chang PS (1989) Complications from silicon-polymer intubulation of nerves. Microsurgery 10:130–133

    Article  CAS  Google Scholar 

  • Meyer J-U, Stieglitz T, Ruf HH, Robitzki A, Dabouras V, Wewetzer K, Brinker T (2002) A biohybrid microprobe for implanting into the peripheral nervous system. In: 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Biology) pp. 265–268

    Google Scholar 

  • Midha R, Munro C, Dalton P, Tator C, Shoichet M (2003) Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. J Neurosurg 99:555–565

    Article  Google Scholar 

  • Miller C, Shanks H, Witt A, Rutkowski G, Mallapragada S (2001) Oriented Schwann cell growth on micropatterned biodegradable polymer substrates. Biomaterials 22:1263–1269

    Article  CAS  Google Scholar 

  • Nagano M, Sakai A, Takahashi N, Umino M, Yoshioka K, Suzuki H (2003) Decreased expression of glial cell line-derived neurotrophic factor signaling in rat models of neuropathic pain. British Journal of Pharmacology 140:1252–1260

    Article  CAS  Google Scholar 

  • Nakahara Y, Gage FH, Tuszynski MH (1996) Grafts of fibroblasts genetically modified to secrete NGF, BDNF, NT-3, or basic FGF elicit differential responses in the adult spinal cord. Cell Transplantation 5:191–204

    Article  CAS  Google Scholar 

  • Narakas AO (1984) Thoughts on neurotization or nerve transfers in irreparable nerve lesions. Clinics in Plastic Surgery 11:153–159

    CAS  Google Scholar 

  • Nath RK, Mackinnon SE, Shenaq SM (1997) New nerve transfers following peripheral nerve injuries. Operative Techniques in Plastic and Reconstructive Surgery 4:2–11

    Article  Google Scholar 

  • Nichols CM, Brenner MJ, Fox IK, Tung TH, Hunter DA, Rickman SR, Mackinnon SE (2006) Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Experimental Neurology 190:347–355

    Article  Google Scholar 

  • Nishiura Y, Brandt J, Nilsson A, Kanje M, and Dahlin LB (2004) Addition of cultured Schwann cells to tendon autografts and freeze-thawed muscle grafts improves peripheral nerve regeneration. Tissue Engineering 10:157–164

    Article  CAS  Google Scholar 

  • Noble J, Munro CA, Prasad VSSV, Midha R (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. The Journal of Trauma 45:116–122

    Article  CAS  Google Scholar 

  • Palti Y (1996) Implantable sensor chip US5,513,636 vol. May 7

    Google Scholar 

  • Patel N, Poo M (1982) Orientation of neurite growth by extracellular electric fields. J Neurosci 2:483–496

    CAS  Google Scholar 

  • Patel N, Poo M (1984) Perturbation of the direction of neurite growth by pulsed and focal electric fields. J Neurosci 4:2939–2947

    CAS  Google Scholar 

  • Patosky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays. Science 313:1100–1104

    Article  Google Scholar 

  • Poduslo JF, Curran GL (1996) Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Research Molecular Brain Research 36:280–286

    Article  CAS  Google Scholar 

  • Politis M, Zanakis M, Albala B (1988) Facilitated regeneration in the rat peripheral nervous system using applied electric fields. The Journal of Trauma 28:1375–1381

    Article  CAS  Google Scholar 

  • Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, Surbek DV (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. American Journal of Obstetrics and Gynecology 194:664–673

    Article  CAS  Google Scholar 

  • Posen JM, Phou HN, Hentz VR (1989) Fascicular tubulization: A comparison of experimental nerve repair techniques in the cat. American Journal of Plastic Surgery 22:467–468

    Article  Google Scholar 

  • Rajnicek AM, Robinson KR, McCaig CD (1998) The Direction of Neurite Growth in a Weak DC Electric Field Depends on the Substratum: Contributions of Adhesivity and Net Surface Charge. Developmental Biology 203:412–423

    Article  CAS  Google Scholar 

  • Richardson PM (1991) Neurotrophic factors in regeneration. Current Opinion in Neurobiology 1:401–406

    Article  CAS  Google Scholar 

  • Rose TL, Kelliher EM, Robblee LS (1985) Assessment of capacitor electrodes for intracortical stimulation. J Neurosci Methods 12:181–193

    Article  CAS  Google Scholar 

  • Rutten W, Mouveroux J-M, Buitenweg J, Heida C, Ruardij T, Marani E, Lakke E (2001) Neuroelectronic interfacing with cultured multielectrode arrays toward a cultured probe. Proceedings of the IEEE 89:1013–1029

    Article  CAS  Google Scholar 

  • Saltzman WM, Olbricht WL (2002) Building drug delivery into tissue engineering. Nature Reviews Drug Discovery 1:177–186

    Article  CAS  Google Scholar 

  • Santini Jr JT, Cima MJ, Langer RS (1998) Microchip drug delivery devices. US005,797,898), vol. August 25

    Google Scholar 

  • Santini Jr JT, Cima MJ, Uhland SA (2003a) Thermally-activated microchip chemical delivery devices. US006,527,762 vol. March 4

    Google Scholar 

  • Santini Jr JT, Cima MJ, Uhland SA (2003b) Thermally-activated microchip chemical delivery devices. In: US006,669,683 vol. December 30

    Google Scholar 

  • Schlosshauer B, Dreesmann L, Schaller H, Sinis N (2006) Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery 59:747–748

    Article  Google Scholar 

  • Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G, van der Kooy D (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nature Biotechnology 22:1115–1124

    Article  CAS  Google Scholar 

  • Seckel B (1990) Enhancement of peripheral nerve regeneration. Muscle & Nerve 13:785–800

    Article  CAS  Google Scholar 

  • Shanley JF, Parker TL (2006) Therapeutic agent delivery device with controlled therapeutic agent release rates. US007,056,338 vol. June 6

    Google Scholar 

  • Shapiro S, Borgens R, Pascuzzi R, Roos K, Groff M, Purvines S, Rodgers R, Hagy S, Nelson P (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg, Spine 2:3–10

    Article  Google Scholar 

  • Sunderland S (1951) A classification of peripheral nerve injuries producing loss of function. Brain 74:491–516

    Article  CAS  Google Scholar 

  • Sunderland S (1968) Nerve and nerve injuries. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Thompson DL, Mattes MF, Larson LR, Heruth KT (2003) Single-use therapeutic substance delivery device with infusion rate control. US006,562,000, vol. May 13

    Google Scholar 

  • Toma JG, Akhavan M, Fernandes KJL, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology 3:778–784

    Article  CAS  Google Scholar 

  • Torres MP, Determan AS, Anderson GL, Mallapragada SK, Narasimhan B (2007) Amphiphilic polyanhydrides for protein stabilization and release. Biomaterials 28:108–116

    Article  CAS  Google Scholar 

  • Trumble TE, McCallister WV (2000) Repair of peripheral nerve defects in the upper extremity. Hand Clinics 16:37–52

    CAS  Google Scholar 

  • Tuttle H (1913) Exposure of the brachial plexus with nerve transplantation. The Journal of the American Medical Association 61:15–17

    Article  Google Scholar 

  • Uhland SA (2006) Implantable drug delivery device. US007,052,488, vol. May 30

    Google Scholar 

  • Wallman L, Levinsson A, Schouenborg J, Holmberg H, Danielsen N, Laurell T (1999) Perforated silicon nerve chips with doped registration electrodes: in vitro performance and in vivo operation. IEEE Transactions on Biomedical Engineering 46:1065–1073

    Article  CAS  Google Scholar 

  • Weber RA, Breidenbach WC, Brown RE, Jabaley ME, Mass DP (2000) A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plastic and Reconstructive Surgery 106:1036–1045

    Article  CAS  Google Scholar 

  • Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Experimental Neurology 134:261–272

    Article  CAS  Google Scholar 

  • Zhao Q, Drott J, Laurell T, Wallman L, Lindstrom K, Bjursten LM, Lundborg G, Montelius L, Danielsen N (1997) Rat sciatic nerve regeneration through a micromachined silicon chip. Biomaterials 18:75–80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naweed I. Syed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Potucek, R.K., Kemp, S.W., Syed, N.I., Midha, R. (2009). Peripheral Nerve Injury, Repair, and Regeneration. In: Santin, M. (eds) Strategies in Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74660-9_10

Download citation

Publish with us

Policies and ethics