Biological Effects of Radiation

  • Michael G. Stabin


Dose Calculation Linear Energy Transfer Bystander Effect Relative Biological Effectiveness Peptide Receptor Radionuclide Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mullner R. Deadly Glow. The Radium Dial Worker Tragedy. American Public Health Association, Washington, DC, 1989.Google Scholar
  2. 2.
    Pimblott SM, LaVerne JA. Stochastic simulation of the electron radiolysis of water and aqueous solutions. J Phys Chem A 101:5828–5838, 1977.CrossRefGoogle Scholar
  3. 3.
    Becker D, Sevilla MD, Wang W, LaVere T. The role of waters of hydration in direct-effect radiation damage to DNA. Radiat Res 148:508–510, 1997.Google Scholar
  4. 4.
    Wright HA, Magee JL, Hamm RN, Chatterjee A, Turner JE, Klots CE. Calculations of physical and chemical reactions produced in irradiated water containing DNA. Radiat Prot Dosimetry 13:133–136, 1985.Google Scholar
  5. 5.
    Turner JE, Hamm RN, Ritchie RH, Bolch WE. Monte Carlo track-structure calculations for aqueous solutions containing biomolecules. Basic Life Sci 63:155–66, 1994.PubMedGoogle Scholar
  6. 6.
    Bergonie J, Tribondeau L. De quelques resultats de la Radiotherapie, et esaie de fixation d’une technique rationelle. Comptes Rendu des Seances de l’Academie des Sciences 143:983–985, 1906.Google Scholar
  7. 7.
    Available at Scholar
  8. 8.
    Luckey TD. Radiation Hormesis. CRC Press, Boca Raton, FL, 1991.Google Scholar
  9. 9.
    Jonah CD, Miller JR. Yield and decay of the OH radical from 100 ps to 3 ns. J Phys Chem 81:1974–1976, 1977.CrossRefGoogle Scholar
  10. 10.
    NCRP. The Relative Biological Effectiveness of Radiations of Different Quality. NCRP Report No. 104. National Council on Radiation Protection and Measurements, Bethesda, MD, 1990.Google Scholar
  11. 11.
    Humm JL, Howell RW, Rao DV. AAPM Report No. 49, Dosimetry of Auger-Electron-Emitting Radionuclides. Med Phys 21(12), 1994.Google Scholar
  12. 12.
    Brooks AL. Evidence for “bystander effects” in vivo. Human Exp Toxicol 23:67–70, 2004.CrossRefGoogle Scholar
  13. 13.
    Hall EJ. The bystander effect. Health Phys 85:31–35, 2003.PubMedCrossRefGoogle Scholar
  14. 14.
    Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 159:581–596, 2003.PubMedCrossRefGoogle Scholar
  15. 15.
    Kishikawa H, Wang K, Adelstein SJ, Kassis AI. Inhibitory and stimulatory bystander effects are differentially induced by iodine-125 and iodine-123. Radiat Res 165:688–694, 2006.PubMedCrossRefGoogle Scholar
  16. 16.
    National Academy of Sciences. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. The National Academies Press, Washington, DC, 2006.Google Scholar
  17. 17.
    Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027,2005.PubMedGoogle Scholar
  18. 18.
    Flux G, The Royal Marsden. Cost estimates: personal communication, 2004.Google Scholar
  19. 19.
    Stabin M. MIRDOSE - the personal computer software for use in internal dose assessment in nuclear medicine. J Nucl Med 37:538–546, 1996.PubMedGoogle Scholar
  20. 20.
    Loevinger R, Budinger T, Watson E. MIRD Primer for Absorbed Dose Calculations. Society of Nuclear Medicine, New York, 1988.Google Scholar
  21. 21.
    Snyder W, Ford M, Warner G, Watson S. “S,” absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet No. 11. Society of Nuclear Medicine, New York, 1975.Google Scholar
  22. 22.
    Snyder W, Ford M, Warner G. Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No. 5, revised. Society of Nuclear Medicine, New York, 1978.Google Scholar
  23. 23.
    Cristy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photons sources. ORNL/TM-8381 V1-V7. Oak Ridge National Laboratory, Oak Ridge, TN, 1987.Google Scholar
  24. 24.
    Stabin M, Watson E, Cristy M, Ryman J, Eckerman K, Davis J, Marshall D, Gehlen K. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. ORNL Report ORNL/TM-12907. Oak Ridge National Laboratory, Oak Ridge, TN, 1995.Google Scholar
  25. 25.
    DeNardo DA, DeNardo GL, O’Donnell RT, et al. Imaging for improved prediction of myelotoxicity after radioimmunotherapy. Cancer 80:2558–2566, 1997.PubMedCrossRefGoogle Scholar
  26. 26.
    Siegel JA, Lee RE, Pawlyk DA, et al. Sacral scintigraphy for bone marrow dosimetry in radioimmunotherapy. Int. J Rad Appl Instrum B16:553–559, 1989.PubMedGoogle Scholar
  27. 27.
    Siegel JA, Wessels, Watson EE, et al. Bone marrow dosimetry and toxicity for radioimmunotherapy. Antibody Immunoconj Radiopharmacol 3:213–233, 1990.Google Scholar
  28. 28.
    Lim S-M, DeNardo GL, DeNardo DA et al. Prediction of myelotoxicity using radiation doses to marrow from body, blood and marrow sources. J Nucl Med 38:1474–1378, 1997.Google Scholar
  29. 29.
    Breitz H, Fisher D, Wessels B. Marrow toxicity and radiation absorbed dose estimates from rhenium-186-labeled monocolonal antibody. J Nucl Med 39:1746–1751, 1998.PubMedGoogle Scholar
  30. 30.
    Eary JF, Krohn KA, Press OWQ, et al. Importance of pre-treatment radiation absorbed dose estimation for radioimmunotherapy of non Hodgkin’s lymphoma. Nucl Med Biol 24:635–638, 1997.PubMedCrossRefGoogle Scholar
  31. 31.
    Behr TM, Sharkey RM, Juweid ME, Dunn RM, Vgg RC, Siegel JA, Goldenberg DM. Hematological toxicity in the radioimmunotherapy of solid cancers with 131I-labeled anti-CEA NP-4 IgG1: dependence on red marrow dosimetry and pretreatment. In: Sixth International Radiopharmaceutical Dosimetry Symposium. Vol I. Stelson A, Stabin M, Sparks R, eds, ORAU, 1999, pp. 113–125.Google Scholar
  32. 32.
    Juweid ME, Zhang C-H, Blumenthal RD, Hajjar G, Sharkey RM, Goldenberg DM. Prediction of hematologic toxicity after radioimmunotherapy with 131I-labeled anticarcinoembryoinic antigen monoclonal antibodies. J Nucl Med 10:1609–1616, 1999.Google Scholar
  33. 33.
    Wiseman GA, Kornmehl E, Leigh B, Erwin WD, Podoloff DA, Spies S, Sparks RB, Stabin MG, Witzig T, White CA. Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin’s lymphoma: combined data from 4 clinical trials. J Nucl Med 44:465–474, 2003.PubMedGoogle Scholar
  34. 34.
    Dale R, Carabe-Fernandez A. The radiobiology of conventional radiotherapy and its application to radionuclide therapy. Cancer Biother Radiopharm 20:47–51, 2005.PubMedCrossRefGoogle Scholar
  35. 35.
    Bodey RK, Flux GD, Evans PM. Combining dosimetry for targeted radionuclide and external beam therapies using the biologically effective dose. Cancer Biother Radiopharm 18:89–97, 2003.PubMedCrossRefGoogle Scholar
  36. 36.
    Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L,. Kvols LK, Krenning EP, Jamar F, Pauwels S. Patient-specific dosimetry in predicting renal toxicity with 90Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 46:99S–106S, 2005.PubMedGoogle Scholar
  37. 37.
    Siegel J, Thomas S, Stubbs J, Stabin M, Hays M, Koral K, Robertson J, Howell R, Wessels B, Fisher D, Weber D, Brill A. MIRD Pamphlet No. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61S, 1999.PubMedGoogle Scholar
  38. 38.
    Shen S, Meredith RF, Duan J, Macey DJ, Khazaeli MB, Robert F, LoBuglio AF. Improved prediction of myelotoxicity using a patient-specific imaging dose estimate for non-marrow-targeting 90Y-antibody therapy. J Nucl Med 43:1245–1253, 2002.PubMedGoogle Scholar
  39. 39.
    Siegel JA, Yeldell D, Goldenberg DN, Stabin MG, Sparks RB, Sharkey RM, Brenner A, Blumenthal RD. Red marrow radiation dose adjustment using plasma FLT3-L cytokine levels: improved correlations between hematologic toxicity and bone marrow dose for radioimmunotherapy patients. J Nucl Med 44:67–76, 2003.PubMedGoogle Scholar
  40. 40.
    Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, Krenning EP, Jamar F. Practical dosimetry of peptide receptor radionuclide therapy with 90Y-labeled somatostatin analogs. J Nucl Med 46(Suppl):92S–98S, 2005.PubMedGoogle Scholar
  41. 41.
    Kobe C, Eschner W, Sudbrock F, Weber I, Marx K, Dietlein M, Schicha H. Graves’ disease and radioiodine therapy: is success of ablation dependent on the achieved dose above 200 Gy? Nuklearmedizin 2007 (in press).Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Michael G. Stabin
    • 1
  1. 1.Department of Radiology/Radiological SciencesVanderbilt UniversityNashvilleUSA

Personalised recommendations