Steps in Dose Calculations

  • Michael G. Stabin


Source Region Dose Calculation Organ Dose Cumulate Activity ICRP Publication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Stabin MG. Health concerns related to radiation exposure of the female nuclear medicine patient. Env Health Perspect 105(Suppl 6):1403–1409, 1997.CrossRefGoogle Scholar
  2. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027, 2005.PubMedGoogle Scholar
  3. Siegel J, Thomas S, Stubbs J, Stabin M, Hays M, Koral K, Robertson J, Howell R, Wessels B, Fisher D, Weber D, Brill A. MIRD Pamphlet No 16:Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61S, 1999.PubMedGoogle Scholar
  4. Crawford DJ, Richmond CR. Epistemological considerations in the extrapolation of metabolic data from non-humans to humans. In: Watson E, Schlafke-Stelson A, Coffey J, Cloutier R, eds. Third International Radiopharmaceutical Dosimetry Symposium. U.S. Department of Health, Education, and Welfare, Washington, DC, 1981, pp. 191–197.Google Scholar
  5. Wegst A. Collection and presentation of animal data relating to internally distributed radionuclides. In: Watson E, Schlafke-Stelson A, Coffey J, Cloutier R, eds. Third International Radiopharmaceutical Dosimetry Symposium. U.S. Department of Health, Education, and Welfare, Washington, DC, 1981, pp. 198–203.Google Scholar
  6. Kirschner A, Ice R, Beierwaltes W. Radiation dosimetry of 131I-19-iodocholesterol: the pitfalls of using tissue concentration data, the author’s reply. J Nucl Med 16:248–249, 1975.Google Scholar
  7. Sparks R, Aydogan B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. In: Proceedings of the Sixth International Radiopharmaceutical Dosimetry Symposium. Stelson A, Stabin M, Sparks R, eds, Oak Ridge Institute for Science and Education, Oak Ridge, TN, 1999, pp. 705–716.Google Scholar
  8. SAAM II. Resource for Kinetic Analysis. University of Washington, Seattle, WA. Available at http://depts.washington. edu/saam2/.Google Scholar
  9. Stella. Isee Systems, Lebanon, NH. Available at www.isee Scholar
  10. PMod Technolgoies, Ltd., Zurich, Switzerland.Google Scholar
  11. Gambhir SS, Mahoney DK, Turner MS, Wong ATC, Phelps ME. Pet Modeling Tool UCLA. Symbolic Interactive Modelling Package and Learning Environment SIMPLE). A New Easy Method for Computer Modelling. Proc Soc Computer Simulation 173–186, 1996.Google Scholar
  12. Stabin MG, da Luz CQPL. New decay data for internal and external dose assessment. Health Phys 83:471–475, 2002.PubMedCrossRefGoogle Scholar
  13. Snyder W, Ford M, Warner G, Fisher H Jr. MIRD Pamphlet No. 5: Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med (Suppl 3):5, 1969.Google Scholar
  14. Snyder W, Ford M, Warner G, Watson S. MIRD Pamphlet No. 11:“S,” absorbed dose per unit cumulated activity for selected radionuclides and organs. Society of Nuclear Medicine, New York, 1975.Google Scholar
  15. Weber DA, Makler PT, Jr, Watson EE, Coffey JL, Thomas SR, London J. MIRD Dose Estimate Report No 13: radiation absorbed dose from 99mTc labeled bone agents. J Nucl Med 30:1117–1122, 1989.PubMedGoogle Scholar
  16. Cloutier R, Watson E, Rohrer R, Smith E. Calculating the radiation dose to an organ, J Nucl Med 14:53–55, 1973.PubMedGoogle Scholar
  17. Stabin M, Watson E, Cristy M, Ryman J, Eckerman K, Davis J, Marshall D, Gehlen K. Mathematical Models and Specific Absorbed Fractions of Photon Energy in the Nonpregnant Adult Female and at the End of Each Trimester of Pregnancy. ORNL Report ORNL/TM 12907, Oak Ridge National Laboratory, Oak Ridge, TN, 1995.Google Scholar
  18. Thomas S, Atkins HL, McAfee JG, et al. MIRD Dose Estimate No. 12: Radiation absorbed dose from 99mTc diethylenetriaminepentaacetic Acid (DTPA). J Nucl Med 25:503–505, 1984.PubMedGoogle Scholar
  19. International Commission on Radiological Protection. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30. Pergamon Press, New York, 1979.Google Scholar
  20. International Commission on Radiological Protection. Radiation Dose Estimates for Radiopharmaceuticals. ICRP Publications 53 and 80, with addenda. Pergamon Press, New York, 1983–1991.Google Scholar
  21. International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Pergamon Press, New York, 1991.Google Scholar
  22. Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, Kalaigian H, McNamara S, Schwartz L, Larson SM. Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 38:301–308,1997.PubMedGoogle Scholar
  23. Tagesson, Ljungberg M, Strand S. The SIMDOS Monte Carlo Code for the conversion of activity distributions to absorbed dose and dose rate distributions, 416–424, 1996. Proc. 6th International Radiopharmaceutical Dosimetry Symposium. Stelson A, Stabin M, Sparks R, eds, Oak Ridge Associated Universities, Oak Ridge, TN, 1999.Google Scholar
  24. Liu A, Williams L, Lopatin G, Yamauchi D, Wong J, Raubitschek A. A radionuclide therapy treatment planning and dose estimation system. J Nucl Med 40:1151–1153, 1999.PubMedGoogle Scholar
  25. Clairand I, Ricard M, Gouriou J, Di Paola M, Aubert B. DOSE3D: EGS4 Monte Carlo code-based software for internal radionuclide dosimetry. J Nucl Med 40:1517–1523, 1999.PubMedGoogle Scholar
  26. Bielajew A, Rogers D. PRESTA: the parameter reduced electron-step transport algorithm for electron monte carlo transport. Nucl Instrum Methods B18:165–181, 1987.CrossRefGoogle Scholar
  27. Briesmeister JF, ed. MCNP - A General Monte Carlo N-Particle Transport Code, Version 4C, LA-13709-M. Los Alamos National Laboratory, 2000.Google Scholar
  28. Lehmann J, Hartmann Siantar C, Wessol DE, Wemple CA, Nigg D, Cogliati J, Daly T, Descalle MA, Flickinger T, Pletcher D, Denardo G. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system. Phys Med Biol 50:947–958, 2005.PubMedCrossRefGoogle Scholar
  29. Yoriyaz H, Stabin MG, dos Santos A. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry. J Nucl Med 42:662–669, 2001.PubMedGoogle Scholar
  30. Stabin M, Yoriyaz H. Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom. Health Phys 82:21–44, 2002.PubMedCrossRefGoogle Scholar
  31. Zubal IG, Harrell CR, Smith EO, Rattner Z, Gindi G, Hoffer PB. Computerized 3 dimensional segmented human anatomy. Med Phys 21:299–302, 1994.Google Scholar
  32. Chao TC, Bozkurt A, Xu XG. Conversion coefficients based on the VIP-man anatomical model and EGS4-VLSI code for external monoenergetic photons from 10 keV TO 10 MeV. Health Phys 81:163–183, 2001.PubMedCrossRefGoogle Scholar
  33. Xu XG, Chao TC, Bozkurt A . VIP-man: an image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations. Health Phys 78:476–486, 2000.PubMedCrossRefGoogle Scholar
  34. Jones DG. A realistic anthropomorphic phantom for calculating specific absorbed fractions of energy deposited from internal gamma emitters. Radiat Prot Dosim 79:411–414, 1998.Google Scholar
  35. Petoussi-Henss N, Zankl M, Fill U, Regulla D. The GSF family of voxel phantoms. Phys Med Biol 47:89–106, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Michael G. Stabin
    • 1
  1. 1.Department of Radiology/Radiological SciencesVanderbilt UniversityNashvilleUSA

Personalised recommendations