Models and Resources for Internal Dose Calculations

  • Michael G. Stabin


International Commission Dose Estimate Radiological Protection Cumulate Activity Thyroid Uptake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Traino AC, Martino FDi, Lazzeri M, Stabin MG. Influence of thyroid volume reduction on calculated dose in radioiodine therapy of Graves’ hyperthyroidism. Phys Med Biol 45:121–129, 2000.PubMedCrossRefGoogle Scholar
  2. 2.
    Loevinger R, Budinger T, Watson E. MIRD Primer for Absorbed Dose Calculations. Society of Nuclear Medicine, New York, 1988.Google Scholar
  3. 3.
    Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys 85:294–310, 2003.PubMedCrossRefGoogle Scholar
  4. 4.
    Stabin MJ, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027, 2005.PubMedGoogle Scholar
  5. 5.
    International Commission on Radiological Protection. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30. Pergamon Press, New York, 1979.Google Scholar
  6. 6.
    International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Pergamon Press, New York, 1991.Google Scholar
  7. 7.
    Poston JW. Application of the effective dose equivalent to nuclear medicine patients. The MIRD Committee. J Nucl Med 34:714–716, 1993.Google Scholar
  8. 8.
    Thomas SR, Stabin MG, Castronovo FP. Radiation-absorbed dose from 201Tl-thallous chloride. J Nucl Med 46:502–508, 2005.PubMedGoogle Scholar
  9. 9.
    International Commission on Radiological Protection. Radiation Dose to Patients from Radiopharmaceuticals. ICRP Publication 53. Pergamon Press, New York, 1988.Google Scholar
  10. 10.
    Cameron JR. A radiation unit for the public. Physics and Society News 20:2, 1991.Google Scholar
  11. 11.
    Weber D, Eckerman K, Dillman LT, Ryman J. MIRD: Radionuclide Data and Decay Schemes. Society of Nuclear Medicine, New York, 1989.Google Scholar
  12. 12.
    International Commission on Radiological Protection. Radionuclide transformations—Energy and Intensity of Emissions. ICRP Publication 38. Pergamon Press, Oxford, 1983.Google Scholar
  13. 13.
    Stabin MG, da Luz CQPL. New decay data for internal and external dose assessment. Health Phys 83:471–475, 2002.PubMedCrossRefGoogle Scholar
  14. 14.
    Snyder W, Ford M, Warner G. Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No. 5, revised. Society of Nuclear Medicine, New York, 1978.Google Scholar
  15. 15.
    International Commission on Radiological Protection. Report of the Task Group on Reference Man. ICRP Publication 23. Pergamon Press, New York, 1975.Google Scholar
  16. 16.
    International Commission on Radiological Protection: Basic Anatomical and Physiological Data for Use in Radiological Protection. Reference Values. ICRP Publication 89. Pergamon Press, New York, 2003.Google Scholar
  17. 17.
    Snyder W, Ford M, Warner G, Watson S. “S,” Absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet No. 11. Society of Nuclear Medicine, New York, 1975.Google Scholar
  18. 18.
    Cristy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photons sources. ORNL/TM-8381 V1-V7. Oak Ridge National Laboratory, Oak Ridge, TN, 1987.Google Scholar
  19. 19.
    Stabin M. MIRDOSE—the personal computer software for use in internal dose assessment in nuclear medicine. J Nucl Med 37:538–546, 1996.PubMedGoogle Scholar
  20. 20.
    Stabin M, Watson E, Cristy M, Ryman J, Eckerman K, Davis J, Marshall D, Gehlen K. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. ORNL Report ORNL/TM-12907. Oak Ridge National Laboratory, Oak Ridge, TN, 1995.Google Scholar
  21. 21.
    Spiers FW, Whitwell JR, Beddoe AH. Calculated dose factors for radiosensitive tissues in bone irradiated by surface-deposited radionuclides, Phys Med Biol 23:481–494, 1978.PubMedCrossRefGoogle Scholar
  22. 22.
    Eckerman K, Stabin M. Electron absorbed fractions and dose conversion factors for marrow and bone by skeletal regions. Health Phys 78(2):199–214, 2000.PubMedGoogle Scholar
  23. 23.
    Bouchet LG, Bolch WE, Howell RW, Rao DV. S-Values for radionuclides localized within the skeleton. J Nucl Med 41:189–212, 2000.PubMedGoogle Scholar
  24. 24.
    Stabin MG, Eckerman KF, Bolch WE, Bouchet LG, Patton PW. Evolution and status of bone and marrow dose models. Cancer Biother Radiopharm 17:427–434, 2002.PubMedCrossRefGoogle Scholar
  25. 25.
    Jokisch DW, Patton PW, Inglis BA, Bouchet LG, Rajon DA, Rifkin J, Bolch WE. NMR microscopy of trabecular bone and its role in skeletal dosimetry. Health Phys 75:584–596, 1998.PubMedGoogle Scholar
  26. 26.
    Watson EE, Stabin MG, Davis JL, Eckerman KF. A model of the peritoneal cavity for use in internal dosimetry. J Nucl Med 30:2002–2011, 1989.PubMedGoogle Scholar
  27. 27.
    Stabin MG. A model of the prostate gland for use in internal dosimetry. J Nucl Med 35:516–520, 1994.PubMedGoogle Scholar
  28. 28.
    Bouchet L, Bolch W, Weber D, Atkins H, Poston J Sr. MIRD Pamphlet No. 15: Radionuclide S values in a revised dosimetric model of the adult head and brain. J Nucl Med 40:62S–101S 1999.Google Scholar
  29. 29.
    Bouchet LG, Bolch WE, Blanco HP, Wessels BW, Siegel JA, Rajon DA, Clairand I, Sgouros G. MIRD Pamphlet No. 19: Absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney. J Nucl Med 44:1113–1147, 2003.PubMedGoogle Scholar
  30. 30.
    Stabin MG, Konijnenberg M. Re-evaluation of absorbed fractions for photons and electrons in small spheres. J Nucl Med 41:149–160, 2000.PubMedGoogle Scholar
  31. 31.
    Stabin MG, Stubbs JB, Toohey RE. Radiation dose estimates for radiopharmaceuticals. NUREG/CR-6345, prepared for: U.S. Nuclear Regulatory Commission, U.S. Department of Energy, U.S. Department of Health & Human Services, 1996, 81 pp.Google Scholar
  32. 32.
    International Commission on Radiological Protection. Radiation Dose Estimates for Radiopharmaceuticals. ICRP Publications 53 and 80, with addenda. Pergamon Press, New York, 1983–1991.Google Scholar
  33. 33.
    Snyder W. Estimates of absorbed fraction of energy from photon sources in body organs. In: Medical Radionuclides: Radiation Dose and Effects. USAEC Division of Technical Information Extension, Oak Ridge, TN, 1970, pp. 33–50.Google Scholar
  34. 34.
    Siegel JA, Stabin MG. Mass-scaling of S J values for blood-based estimation of red marrow absorbed dose: the quest for an appropriate method. J Nucl Med 48:253–256, 2007.PubMedGoogle Scholar
  35. 35.
    Russell JR, Stabin MG, Sparks RB, Watson EE. Radiation absorbed dose to the embryo/fetus from radiopharmaceuticals. Health Phys 73:756–769, 1997.PubMedCrossRefGoogle Scholar
  36. 36.
    Stabin M. Proposed addendum to previously published fetal dose estimate tables for 18F-FDG. J Nucl Med 45:634–635, 2004.PubMedGoogle Scholar
  37. 37.
    Watson EE. Radiation absorbed dose to the human fetal thyroid. In: Fifth International Radiopharmaceutical Dosimetry Symposium. Watson EE, Schlafke-Stelson AT, eds, Oak Ridge Associated Universities, Oak Ridge, TN, 1992, pp. 179–187.Google Scholar
  38. 38.
    Stabin MG, Watson EE, Marcus CS, Salk RD. Radiation dosimetry for the adult female and fetus from iodine-131 administration in hyperthyroidism. J Nucl Med 32:808–813, 1991.PubMedGoogle Scholar
  39. 39.
    Rodriguez M. Development of a kinetic model and calculation of radiation dose estimates for sodium-iodide-131I in athyroid individuals. Master’s project, Colorado State University, 1996.Google Scholar
  40. 40.
    Sparks RB, Stabin M. Fetal radiation dose estimates for I-131 sodium iodide in cases where accidental conception occurs after administration. In: Stelson A, Stabin M, Sparks R, eds. Sixth International Radiopharmaceutical Dosimetry Symposium. Oak Ridge Associated Unversities, Oak Ridge, TN, 1999, pp. 360–364.Google Scholar
  41. 41.
    Stabin M, Breitz H. Breast milk excretion of radiopharmaceuticals: mechanisms, findings, and radiation dosimetry. J Nucl Med 41:863–873, 2000.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Michael G. Stabin
    • 1
  1. 1.Department of Radiology/Radiological SciencesVanderbilt UniversityNashvilleUSA

Personalised recommendations