Advertisement

How can physicians quantify brain degeneration?

  • M. Bach Cuadra
  • J.-Ph. Thiran
  • F. Marqués

Abstract

Life expectation is increasing every year. Along with this aging population, the risk of neurological diseases (e.g., dementia)1 is considerably increasing2 as well. Such disorders of the human nervous system affect the patient from both a physical and a social point of view, as in the case of Alzheimer’s disease, one of the most known brain disorders (Mazziotta et al. 2000).

Keywords

Gray Matter Gaussian Mixture Model Image Registration Image Histogram Gray Matter Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, J. and K.J. Friston (2000). “Voxel-based morphometry -the methods.” Neuroimage 11(6 Pt 1): 805–821.CrossRefGoogle Scholar
  2. Bach Cuadra, M., L. Cammoun, et al. (2005). “Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images.” IEEE Transactions on Medical Imaging 24(12): 1548–1565.CrossRefGoogle Scholar
  3. Bankman, I.N. (2000). Handbook of Medical Imaging. San Diego, Academic Press.Google Scholar
  4. Besag, J. (1974). “Spatial interaction and the statistical analysis of lattice systems.” Journal of Royal Statistical Society 36: 192–225.MathSciNetMATHGoogle Scholar
  5. Bilmes, J.A. (1998). A Gentle Tutorial of the EM Algorithm and its Applications T Pa-rameter Estimation for Gaussian Mixture and Hidden Markov models. Berkeley, ICSI.Google Scholar
  6. Galton, C.J., K. Patterson, et al. (2001). “Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia.” Neurology 57(2): 216–225.CrossRefGoogle Scholar
  7. Geman, S. and D. Geman (1984). “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.” IEEE Transactions Pattern Analysis and Machine Intelligence 6: 721–741.MATHCrossRefGoogle Scholar
  8. Gudbjartsson, H. and S. Patz (1995). “The Rician distribution of noisy MRI data.” Magnetic Resonance in Medical Sciences 34(6):910–914.CrossRefGoogle Scholar
  9. Haacke, E.M., R.W. Brown, et al. (1999). Magnetic Resonance Imaging: Physical Principles and Sequence Design, Wiley-Liss, New York.Google Scholar
  10. Hajnal, J.V., D.L.G. Hill, et al. (2001). Medical Image Registration, CRC, London.CrossRefGoogle Scholar
  11. Li, S. Z. (2001). Markov Random Field Modeling in Image Analysis, Springer, Tokyo.MATHCrossRefGoogle Scholar
  12. Maintz J.B.A., and M.A. Viergever. (1998). “A survey of medical image registration.” Medical Image Analysis 2(1):1–36.CrossRefGoogle Scholar
  13. Mazziotta, J.C., A.W. Toga, et al. (2000). Brain Mapping: The Disorders, San Diego, Academic Press.Google Scholar
  14. Suri, J.S., D. Wilson, et al. (2005). Handbook of Biomedical Image Analysis: Segmentation Models (Volume 1 &2), Springer, Heidelberg.CrossRefGoogle Scholar
  15. Van Leemput, K., F. Maes, et al. (2003). “A unifying framework for partial volume segmentation of brain MR images.” IEEE Transactions on Medical Imaging 22(1): 105–119.CrossRefGoogle Scholar
  16. Zhang, Y., M. Brady, et al. (2001). “Segmentation of brain MR images through a Hidden Markov Random Field Model and the Expectation-Maximization algorithm.” IEEE Transactions Medical Imaging 20(1):45–57.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2009

Authors and Affiliations

  • M. Bach Cuadra
    • 1
  • J.-Ph. Thiran
    • 1
  • F. Marqués
    • 2
  1. 1.Ecole Polytechnique Fédérale de LausanneSwitzerland
  2. 2.Universitat Politècnica de CatalunyaSpain

Personalised recommendations