How does digital cinema compress images?

  • A. Descampe
  • C. De Vleeschouwer
  • L. Jacques
  • F. Marqués


The development of digital technologies has drastically modified the requirements and constraints that a good image representation format should meet. Originally, the requirements were to achieve good compression efficiency while keeping the computational complexity low. This has led in 1992 to the standardization of the JPEG format, which is still widely used today (see Chapter 8). Over the years however, many things have evolved: more computing power is available and the development of Internet has required image representation formats to be more flexible and network- oriented, to enable efficient access to images through heterogeneous devices.


Discrete Cosine Transform Wavelet Transform Wavelet Coefficient Resolution Level Detail Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Daubechies I., Ten lectures on wavelets. Society for Industrial and Applied Mathematics, 1992, ISBN 0–89871–274–2.CrossRefGoogle Scholar
  2. DCI. Digital cinema system specifications. Digital Cinema Initiatives (DCI), March 2005, URL Scholar
  3. Foos D.H., Muka E., Slone R.M., Erickson B.J., Flynn M.J., Clunie D.A., Hildebrand L., Kohm K.S., Young S.S., JPEG2000 compression of medical imagery. Proceedings of SPIE, 3980:85, 2003.CrossRefGoogle Scholar
  4. Fossel S., Fottinger G., Mohr J., Motion JPEG2000 for high quality video systems. IEEE Transactions on Consumer Electronics, 49(4):787–791, 2003.CrossRefGoogle Scholar
  5. Janosky J., Witthus R.W., Using JPEG2000 for enhanced preservation and web access of digital archives. In IS&T’s 2004 Archiving Conference, pages 145– 149, April 2004.Google Scholar
  6. Kellerer H., Pferschy U., Pisinger D. Knapsack Problems. Springer Verlag, Berlin, 2004, ISBN 3–540–40286–1.MATHCrossRefGoogle Scholar
  7. Mallat S., A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA, 2nd edition, 1999.MATHGoogle Scholar
  8. Marpe D., George V., Cycon H.L., Barthel K.U., Performance evaluation of Motion-JPEG2000 in comparison with H. 264/AVC operated in pure intracoding mode. Proceedings of SPIE, 5266:129–137, 2003.Google Scholar
  9. Mitchell J.L., Pennebaker W.B., Software implementations of the Qcoder. IBM Journal of research and Development, 32(6):753–774, November 1988.CrossRefGoogle Scholar
  10. Ortega A., Optimal bit allocation under multiple rate constraints. In Data Compression Conference, pages 349–358, Snowbird, UT, April 1996.Google Scholar
  11. Ortega A., Ramchandran K., Rate-distortion methods for image and video compression. IEEE Signal Processing Magazine, 15(6):23–50, November 1998.CrossRefGoogle Scholar
  12. Ortega A., Ramchandran K., Vetterli M., Optimal trellis-based buffered compression and fast approximation. IEEE Transactions on Image Processing, 3(l):26–40, January 1994.CrossRefGoogle Scholar
  13. Prandolini R., 15444–9:2004 JPEG2000 image coding system -Part 9: Interactivity tools, apis and protocols. Technical Report, ISO/IEC JTC1/SC29 WG1, March 2004.Google Scholar
  14. Rabbani M., Joshi R., An overview of the JPEG2000 still image compression standard. Signal Processing: Image Communication, 17(1):3–48, January 2002.CrossRefGoogle Scholar
  15. Santa-Cruz D., Grosbois R., Ebrahimi T., JPEG2000 performance evaluation and assessment. Signal Processing: Image Communication, 17(1):113–130, January 2002.CrossRefGoogle Scholar
  16. Shoham Y., Gersho A., Efficient bit allocation for an arbitrary set of quantizers. IEEE Transactions on Signal Processing, 36(9): 1445–1453, September 1988.Google Scholar
  17. Skodras A., Christopoulos C., Ebrahimi T., The JPEG2000 still image compression standard. Signal Processing Magazine, IEEE, 18(5):36–58, 2001.CrossRefGoogle Scholar
  18. Smith M., Villasenor J., Intra-frame JPEG-2000 vs. Inter-frame compression comparison: The benefits and trade-offs for very high quality, high resolution sequences. SMPTE Technical Conference, Pasadena, CA, October 2004.Google Scholar
  19. Symes P., JPEG2000, the Professional compression scheme. Content Technology Magazine, 3(3), June 2006, URL Scholar
  20. Taubman D., High performance scalable image compression with ebcot. IEEE Transactions on Image Processing, 9(7):1158–1170, July 2000.CrossRefGoogle Scholar
  21. Taubman D., Marcellin M.W., JPEG2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic, Boston, MA, USA, 2002.Google Scholar
  22. Taubman D., Prandolini R., Architecture, philosophy and performance of JPIP: Internet protocol standard for JPEG2000. In International Symposium on Visual Communications and Image Processing (VCIP), Lugano, Switzerland, July 2003.Google Scholar
  23. Taubman D., Rosenbaum R., Rate-distortion optimized interactive browsing of JPEG2000 images. In IEEE International Conference on Image Processing (ICIP), September 2003.Google Scholar
  24. Tzannes A., Ebrahimi T., Motion JPEG2000 for medical imaging. ISO/IEC wgln2883, Medical Imaging Ad Hoc Group, 2003.Google Scholar
  25. Wolsey L., Integer Programming. Wiley, New York, 1998.MATHGoogle Scholar
  26. Zhang D.R., Wang X.X., The manipulation approach of JPEG2000 compressed remote sensing images. Proceedings of SPIE, 6044:315-324, 2005.Google Scholar

Copyright information

© Springer Science+Business Media New York 2009

Authors and Affiliations

  • A. Descampe
    • 1
  • C. De Vleeschouwer
    • 2
  • L. Jacques
    • 2
    • 3
  • F. Marqués
    • 4
  1. 1.PIX S.ABelgium
  2. 2.Université catholique de LouvainBelgium
  3. 3.Ecole Polytechnique Fédérale de LausanneSwitzeland
  4. 4.Universitat Politècnica de CatalunyaSpain

Personalised recommendations