Skip to main content

Performance Models for Dynamic Traffic Grooming

  • Chapter
Traffic Grooming for Optical Networks

Part of the book series: Optical Networks ((OPNW))

  • 418 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. C. Rosen, A. Viswanathan, and R. Callon. (2001, Jan.) Multi-protocol label switching architecture. IETF RFC 3031. [Online]. Available: http://www.ietf.org

    Google Scholar 

  2. K. Zhu and B. Mukherjee, “Traffic grooming in an optical WDM mesh network,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 1, pp. 122–133, Jan. 2002.

    Google Scholar 

  3. J. Q. Hu and B. Leida, “Traffic grooming, routing, and wavelength assignment in optical WDM mesh networks,” in Proc. IEEE Infocom, pp. 495–501, 2004.

    Google Scholar 

  4. C. Xin, Y. Ye, S. Dixit, and C. Qiao, “An integrated lightpath provisioning approach in mesh optical networks,” in OFC Technical Digest, pp. 547–549, 2002.

    Google Scholar 

  5. K. Zhu and B. Mukherjee, “Online approaches for provisioning connections of different bandwidth granularities in WDM mesh networks,” in OFC Technical Digest, pp. 549–551, 2002.

    Google Scholar 

  6. H. Zhu, H. Zang, K. Zhu, and B. Mukherje, “A novel generic graph model for traffic grooming in heterogeneous WDM mesh networks,” IEEE/ACM Transactions on Networking, vol. 11, no. 2, pp. 285–299, Apr. 2003.

    Google Scholar 

  7. K. Zhu, H. Zhu, and B. Mukherjee, “Traffic engineering in multigranularity heterogeneous optical WDM mesh networks through dynamic traffic engineering,” IEEE Network, vol. 17, no. 2, pp. 8–15, Mar./Apr. 2003.

    Google Scholar 

  8. W. Yao and B. Ramamurthy, “A link bundled auxiliary graph model for constrained dynamic traffic grooming in WDM mesh networks,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 8, pp. 1542–1555, Aug. 2005.

    Google Scholar 

  9. C. Ou, K. Zhu, H. Zang, L. Sahasrabuddhe, and B. Mukherjee, “Traffic grooming for survivable WDM networks—shared protection,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 9, pp. 1367–1383, Nov. 2003.

    Google Scholar 

  10. K. Zhu, H. Zang, and B. Mukherjee, “A comprehensive study on next-generation optical grooming switches,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 7, pp. 1173–1186, Sept. 2003.

    Google Scholar 

  11. A. Birman, “Computing approximate blocking probability for a class of all-optical networks,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 5, pp. 852–857, June 1996.

    Google Scholar 

  12. A. Sridharan and K. Sivarajan, “Blocking in all-optical networks,” in Proc. IEEE Infocom, pp. 990–999, 2000.

    Google Scholar 

  13. A. Mokhtar and M. Azizoglu, “Adaptive wavelength routing in all-optical networks,” IEEE/ACM Transactions on Networking, vol. 6, no. 2, pp. 197–206, Apr. 1998.

    Google Scholar 

  14. S. Subramaniam, M. Azizoglu, and A. Somani, “All-optical networks with sparse wavelength conversion,” IEEE/ACM Transactions on Networking, vol. 4, no. 4, pp. 544–557, Aug. 1996.

    Google Scholar 

  15. R. Barry, “Model of blocking probability in all-optical networks with and without wavelength changer,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 5, pp. 858–867, June 1996.

    Google Scholar 

  16. Y. Zhu, G. Rouskas, and H. Perros, “A path decomposition approach for computing blocking probabilities in wavelength-routing networks,” IEEE/ACM Transactions on Networking, vol. 8, no. 6, pp. 747–762, Dec. 2000.

    Google Scholar 

  17. R. Srinivasan and A. K. Somani, “A generalized framework for analyzing time–space switched optical networks,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 1, pp. 202–215, Jan. 2002.

    Google Scholar 

  18. R. Srinivasan and A. K. Somani, “Analysis of optical networks with heterogeneous grooming architectures,” IEEE/ACM Transactions on Networking, vol. 12, no. 5, pp. 931–943, Oct. 2004.

    Google Scholar 

  19. V. R. Konda and T. Y. Chow, “Algorithm for traffic grooming in optical networks to minimize the number of transceivers,” in Proc. IEEE Workshop on High Performance Switching and Routing, pp. 218–221, 2001.

    Google Scholar 

  20. D. Li, Z. Sun, X. Jia, and S. Makki, “Traffic grooming for minimizing wavelength usage in WDM networks,” in Proc. IEEE ICCCN, pp. 460–465, 2002.

    Google Scholar 

  21. C. Xin, C. Qiao, and S. Dixit, “Traffic grooming in mesh WDM optical networks — performance analysis,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 9, pp. 1658–1669, Nov. 2004.

    Google Scholar 

  22. F. P. Kelly, “Blocking probabilities in large circuit switched networks,” Advances in Applied Probability, vol. 18, pp. 473–505, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. P. Chung, A. Kashper, and K. W. Ross, “Computing approximate blocking probabilities for large loss networks with state-dependent routing,” IEEE/ACM Transactions on Networking, vol. 1, no. 1, pp. 105–115, Feb. 1993.

    Google Scholar 

  24. A. Girard, Routing and Dimensioning in Circuit-Switched Networks. Addison-Wesley, Nov. 1990.

    Google Scholar 

  25. J. Bannister, J. Touch, A. Willner, and S. Suryaputra, “How many wavelengths do we really need? a study of the performance limits of packet over wavelengths,” Optical Networks Magazine, vol. 2, pp. 1–12, Apr. 2000.

    Google Scholar 

  26. S. P. Chung and K. W. Ross, “Reduced load approximations for multi-rate loss networks,” IEEE Transactions on Communications, vol. 41, no. 8, pp. 1474–1481, Aug. 1993.

    Google Scholar 

  27. C. Xin, J. Li, X. Cao, and B. Wang, “A route segment technique for blocking analysis of dynamic traffic grooming,” in Proc. IEEE BroadNets, the 2nd IEEE/Create-Net International Workshop on Traffic Grooming, 2005.

    Google Scholar 

  28. C. Xin, “Blocking analysis of dynamic traffic grooming in mesh WDM optical networks,” IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 721–733, June 2007.

    Google Scholar 

  29. W. Yao, M. Li, and B. Ramamurthy, “Performance analysis of sparse traffic grooming in WDM mesh networks,” in Proc. IEEE ICC, pp. 1766–1770, 2005.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xin, C. (2008). Performance Models for Dynamic Traffic Grooming. In: Dutta, R., Kamal, A.E., Rouskas, G.N. (eds) Traffic Grooming for Optical Networks. Optical Networks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74518-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74518-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74517-6

  • Online ISBN: 978-0-387-74518-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics