Advertisement

Efficient Digital VLSI Signal Processing for OFDM

La perfection est atteinte non quand il ne reste rien à ajouter, mais quand il ne reste rien à enlever.

Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.

Antoine de Saint-Exupéry, 1900–1944.881

To go beyond is as wrong as to fall short.

Confucius, 551–479 BC.88

The technological evolution that allowed digitization of OFDM signal processing has been one of the main enablers for the long-awaited breakthrough of multicarrier modulation techniques [Bingham90]. While research into OFDM-related algorithms has resulted already in numerous publications, yet, a proof was missing that a cost-efficient integrated implementation for high-data rate wireless LANs was feasible. In particular, insufficient research results were present regarding the tradeoff between algorithmic performance and architectural complexity.

In this chapter, we propose systematic techniques for this design space exploration and describe two ASIC implementations: one...

Keywords

Fast Fourier Transform Channel Estimation Timing Synchronization Carrier Frequency Offset Cyclic Prefix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. [Abidi97]
    A. A. Abidi, Direct-conversion radio transceivers for digital communications, IEEE J. Solid-State Circuits, 30(12):1399–1410, 1997Google Scholar
  2. [Abidi00]
    A. A. Abidi, G. J. Pottie, and W. J. Kaiser, Power-conscious design of wireless circuits and systems, Proc. IEEE, 88(10):1528–1545, 2000Google Scholar
  3. [ADSL]
    ITU-T G.992, Asymmetrical Digital Subscriber Line (ADSL) transceivers, July 1999Google Scholar
  4. [AHD00]
    The American Heritage Dictionary of the English Language, 4th edition. Boston: Houghton Mifflin, 2000 (http://www.bartleby.com)
  5. [Aiello03]
    G. R. Aiello and G. D. Rogerson, Ultra-wideband wireless systems, IEEE Microwave Mag., 4(2):36–47, 2003Google Scholar
  6. [Akansu98]
    A. N. Akansu, P. Duhamel, and X. Lin, Orthogonal transmultiplexers in communication: A review, IEEE Trans. Signal Process., 46(4):979– 995, 1998Google Scholar
  7. [Alard87]
    M. Alard and R. Lassalle, Principles of modulation and channel coding for digital broadcasting for mobile receivers, EBU Technical Review, no. 224, pp. 168–190, August 1987Google Scholar
  8. [Allais43]
    M. F. C. Allais, A la recherché d'une discipline économique: L'économie pure. Paris: Ateliers Industria, 1943Google Scholar
  9. [Allen90]
    P. E. Allen, B. Chan, and W. M. Zuberek, Comparison of mixed analog—digital simulators, in Proceedings of IEEE International Symposium on Circuits and Systems, New Orleans, USA, May 1990, pp. 101–104Google Scholar
  10. [Armour00]
    S. Armour, A. Nix, and D. Bull, Complexity evaluation for the implementation of a pre-FFT equalizer in an OFDM receiver, IEEE Trans. Consum. Electron., 46(3):428–437, 2000Google Scholar
  11. [Asbeck01]
    P. M. Asbeck, L. E. Larson, and I. G. Galton, Synergistic design of DSP and power amplifiers for wireless communications, IEEE Trans. Microwave Theory Techn., 49(11):2163–2169, 2001Google Scholar
  12. [Aue01]
    V. Aue, J. Kneip, M. Weiss, M. Bolle, and G. Fettweis, MATLAB based codesign framework for wireless broadband communication DSPs, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, USA, May 2001, pp. 1253–1256Google Scholar
  13. [Baas99a]
    B. Baas, A low-power, high-performance, 1024-point FFT processor, IEEE J. Solid-State Circuits, 34(3):380–387, 1999Google Scholar
  14. [Baas99b]
    B. Baas, An approach to low-power, high-performance, Fast Fourier Transform processor design, Ph.D. Dissertation, Stanford University, Palo Alto, USA, February 1999Google Scholar
  15. [Bae94]
    J. Bae, V. K. Prasanna, and H. Park, Synthesis of a class of data format converters with specified delays, in Proceedings of International Conference on Application Specific Array Processors, San Francisco, USA, August 1994, pp. 283–294Google Scholar
  16. [Bae98]
    J. Bae and V. K. Prasanna, Synthesis of area efficient and high-throughput rate data format converters, IEEE Trans. VLSI Syst., 6(4):697–706, 1998Google Scholar
  17. [Bahai99]
    A. R. S. Bahai and B. R. Saltzberg, Multi-Carrier Digital Communications — Theory and Applications of OFDM. New York: Kluwer, 1999Google Scholar
  18. [Baltus03]
    P. G. M. Baltus, Efficient RF Design Methods, presented at IMEC Design Technology Seminar, 14 March 2003Google Scholar
  19. [Bannon94]
    L. Bannon, R. Keil-Slawik, and I. Wagner, eds., A Multidisciplinary Foundation for System Design and Evaluation. Germany: Schloss Dagstuhl, 1994Google Scholar
  20. [Bell76]
    T. E. Bell and T. A. Thayer, Software requirements: Are they really a problem? in Proceedings of International Conference on Software Engineering, San Francisco, USA, 1976, pp. 61–68Google Scholar
  21. [Bello65]
    P. A. Bello, Selective fading limitations of the Kathryn modem and some system design considerations, IEEE Trans. Commun. Technol., 13(3):320–333, 1965Google Scholar
  22. [Benini96]
    L. Benini and G. De Micheli, Automatic synthesis of low-power gated-clock finite-state machines, IEEE Trans. CAD, 15(6):630–643, 1996Google Scholar
  23. [Benini99]
    L. Benini and G. De Micheli, System-level power optimization: Techniques and tools, in Proceedings of International Symposium on Low Power Electronics and Design, San Diego, USA, August 1999, pp. 288–293Google Scholar
  24. [Bergland69]
    G. Bergland, Fast Fourier transform hardware implementations — An overview, IEEE Trans. Audio Electroacoust., 17(2):104–108, 1969Google Scholar
  25. [Bertran91]
    E. Bertran and J. M. Palacin, Control theory applied to the design of AGC circuits, in Proceedings of Mediterranean Electrotechnical Conference, Ljubljana, Slovenia, May 1991, pp. 60–70Google Scholar
  26. [Bickerstaff98]
    M. Bickerstaff, T. Arivoli, P. J. Ryan, N. Weste, and D. Skellern, A low-power 50-MHz FFT processor with cyclic extension and shaping filter, in Proceedings of Asia and South Pacific Design Automation Conference, Yokohama, Japan, February 1998, pp. 335–336Google Scholar
  27. [Bidet95]
    E. Bidet, D. Castelain, C. Joanblancq, and P. Senn, A fast single-chip implementation of 8192 complex-point FFT, IEEE J. Solid-State Circuits, 30(3):300–305, 1995Google Scholar
  28. [Bingham90]
    J. Bingham, Multicarrier modulation for data transmission: An idea whose time has come, IEEE Commun. Mag., 28(5):5–14, 1990MathSciNetGoogle Scholar
  29. [Bisdikian01]
    C. Bisdikian, An overview of the Bluetooth wireless technology, IEEE Commun. Mag., 39(12):86–94, 2001Google Scholar
  30. [Blackard93]
    K. L. Blackard, T. S. Rappaport, and C. W. Bostian, Measurements and models of radio frequency impulsive noise for indoor wireless communications, IEEE J. Sel. Areas Commun., 11(7):991–1001, 1993Google Scholar
  31. [Bolle98]
    M. Bolle, D. Clawin, K. Gieske, F. Hofmann, T. Mlasko, M. Ruf, and G. Spreitz, The receiver engine chip-set for digital audio broadcasting, in Proceedings of URSI International Symposium on Signals, Systems, and Electronics, Pisa, Italy, September 1998, pp. 338–342Google Scholar
  32. [Bolsens97]
    I. Bolsens, H. De Man, B. Lin, K. Van Rompaey, S. Vercauteren, and D. Verkest, Hardware/software co-design of digital telecommunication systems, Proc. IEEE, 85(3):391–418, 1997Google Scholar
  33. [Borel99]
    J. Borel, Design Automation in MEDEA: Present and Future, IEEE Micro, 19(5):71–79, 1999Google Scholar
  34. [Bougard03a]
    B. Bougard, G. Lenoir, W. Eberle, F. Catthoor, and W. Dehaene, A new approach to dynamically trade off performance and energy consumption in wireless communication systems, in Proceedings of IEEE Symposium on Signal Processing System, Seoul, South Korea, August 2003, pp. 298–303Google Scholar
  35. [Bougard03b]
    B. Bougard et al., A scalable 8.7-nJ/bit 75.6-Mbit/s parallel concatenated convolutional (turbo-) CODEC, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2003, pp. 152–153Google Scholar
  36. [Bougard04]
    B. Bougard, S. Pollin, G. Lenoir, W. Eberle, L. Van der Perre, F. Catthoor, and W. Dehaene, Modeling of energy-scalable wireless local area network transceivers, in Proceedings of IEEE Workshop on Signal Processing Advances in Wireless Communication, July 2004Google Scholar
  37. [Bouras03]
    I. Bouras et al., A digitally calibrated 5.15–5.825 GHz transceiver for 802.11a wireless LANs in 0.18 μm CMOS, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2003, pp. 352–353Google Scholar
  38. [Brakensiek02]
    J. Brakensiek, B. Oelkrug, M. Bücker, D. Uffmann, A. Dröge, M. Darianian, and M. Otte, Software radio approach for re-configurable multi-standard radios, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, 2002, pp. 110–114Google Scholar
  39. [Brederlow01]
    R. Brederlow, W. Weber, J. Sauerer, S. Donnay, P. Wambacq, and M. Vertregt, A mixed-signal design roadmap, IEEE Des. Test Comput., 18:34–46, 2001Google Scholar
  40. [Brockmeyer99]
    E. Brockmeyer, C. Ghez, J. D'Eer, F. Catthoor, and H. De Man, Parametrizable behavioral IP module for a data-localized low-power FFT, in Proceedings of IEEE Workshop on Signal Processing Systems, October 1999, pp. 635–644Google Scholar
  41. [Bryant01]
    R. E. Bryant et al., Limitations and challenges of computer-aided design technology for CMOS VLSI, Proc. IEEE, 89(3):341–365, 2001Google Scholar
  42. [Büchi97]
    M. Büchi and W. Weck, A plea for grey-box components, TUCS Technical Report No. 122, Turku Centre for Computer Science, August 1997Google Scholar
  43. [Buck94]
    J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, Ptolemy: A framework for simulating and prototyping heterogeneous systems, Int. J. Comput. Simul., 4:155–182, 1994Google Scholar
  44. [Busson01]
    P. Busson, P.-O. Jouffre, P. Dautriche, F. Paillardet, and I. Telliez, A complete single-chip front-end for digital satellite broadcasting, in Proceedings of International Conference on Consumer Electronics, Los Angeles, USA, June 2001, pp. 112–113Google Scholar
  45. [Busson02]
    P. Busson et al., Satellite tuner single chip simulation with ADS (http://eesof.tm.agilent.com/pdf/st.pdf)
  46. [Callaway02]
    E. Callaway et al., Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks, IEEE Commun. Mag., 40(8):70–76, 2002Google Scholar
  47. [Catthoor88]
    F. Catthoor et al., Architectural strategies for an application-specific synchronous multiprocessor environment, IEEE Trans. Acoust. Speech Signal Process., 36(2):265–284, 1988Google Scholar
  48. [Catthoor90]
    F. Catthoor, D. Lanneer, and H. De Man, Efficient microcoded processor design for fixed rate DFT and FFT, J. VLSI Signal Process., 1:287–306, 1990Google Scholar
  49. [Catthoor98a]
    F. Catthoor, S. Wuytack, E. De Greef, F. Franssen, L. Nachtergaele, and H. De Man, System-level transformations for low data transfer and storage, in Low Power CMOS Design, A. Chandrakasan and R. Brodersen, Eds. New York: IEEE, 1998, pp. 609–618Google Scholar
  50. [Catthoor98b]
    F. Catthoor, D. Verkest, and E. Brockmeyer, Proposal for unified system design meta flow in task-level and instruction-level design technology research for multi-media applications, in Proceedings of International Symposium on System Synthesis, Hsinchu, Taiwan, December 1998, pp. 89–95Google Scholar
  51. [Cetin97]
    E. Çetin, R. C. S. Morling, and I. Kale, An integrated 256-point complex FFT processor for real-time spectrum analysis and measurement, in Proceedings of Instrumentation and Measurement Technology Conference, Ottawa, Canada, May 1997, pp. 96–101Google Scholar
  52. [Chang69]
    R. W. Chang, Synthesis of band limited orthogonal signals for multichannel data transmission, Bell Syst. Techn. J., 45:1775–1796, 1969Google Scholar
  53. [Chang70]
    R. W. Chang, Orthogonal frequency-division multiplexing, US Patent 3,448,455, filed November 1966, issued January 1970Google Scholar
  54. [Chang96b]
    J.-M. Chang and M. Pedram, Energy minimization using multiple supply voltages, in Proceedings of International Symposium on Low Power Electronics and Design, Monterey, USA, August 1996, pp. 157– 162Google Scholar
  55. [Chang99]
    H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd, Surviving the SOC Revolution: A Guide to Platform-Based Design. Boston: Kluwer, 1999Google Scholar
  56. [Chen94]
    K.-C. Chen, Medium access control of wireless LANs for mobile computing, IEEE Network, 8(5):50–63, 1994Google Scholar
  57. [Chen99]
    J. Chen, D. Feng, J. Philips, and K. Kundert, Simulation and modeling of intermodulation distortion in communication circuits, in Proceedings of IEEE Custom Integrated Circuits Conference, San Diego, USA, May, 1999, pp. 5–8Google Scholar
  58. [Chen01]
    J. C. Chen and J. M. Gilbert, Measured performance of 5-GHz 802.11a Wireless LAN systems, Technical Report, Atheros Communications, 27 August 2001Google Scholar
  59. [Chia91]
    S. T. S. Chia, Network architectures for supporting mobility in a Third Generation mobile system, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, September 1991, pp. 236–240Google Scholar
  60. [Chow91a]
    J. S. Chow, J. C. Tu, and J. M. Cioffi, Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services, IEEE J. Sel. Areas Commun., 9(6):909–919, 1991Google Scholar
  61. [Chow91b]
    J. S. Chow, J. C. Tu, and J. M. Cioffi, A discrete multitone transceiver system for HDSL applications, IEEE J. Sel. Areas Commun., 9(6):895– 908, 1991Google Scholar
  62. [Chung01]
    S. T. Chung and A. J. Goldsmith, Degrees of freedom in adaptive modulation: A unified view, IEEE Trans. Commun., 49(9):1561–1571, 2001MATHGoogle Scholar
  63. [Ciborra94]
    C. Ciborra, From Thinking to Tinkering. New York: Wiley, 2004Google Scholar
  64. [Cimini85]
    L. J. Cimini, Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing, IEEE Trans. Commun., 33:665–675, 1985Google Scholar
  65. [Claasen99]
    T. A. C. M. Claasen, High speed: Not the only way to exploit the intrinsic computational power of silicon, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 1999, pp. 22–25Google Scholar
  66. [Claessen94]
    A. Claessen, L. Monteban, and H. Moelard, The AT&T GIS WaveLAN air interface and protocol stack, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, September 1994, pp. 1442–1446Google Scholar
  67. [Clawin98]
    D. Clawin et al., Architecture and performance of an alternative DAB receiver chip set, in Proceedings of European Microwave Conference, October 1998, pp. 645–650Google Scholar
  68. [Colwell04]
    B. Colwell, Design fragility, IEEE Comput. Mag., 37(1):13–16, 2004Google Scholar
  69. [Côme00]
    B. Côme, R. Ness, S. Donnay, L. Van der Perre, W. Eberle, P. Wambacq, M. Engels, and I. Bolsens, Impact of front-end non-idealities on bit error rate performances of WLAN—OFDM transceivers, in Proceedings of IEEE Radio and Wireless Conference, Denver, USA, September 2000, pp. 91–94Google Scholar
  70. [Côme04]
    B. Côme, D. Hauspie, G. Albasini, S. Brebels, W. De Raedt, W. Diels, W. Eberle, H. Minami, J. Ryckaert, J. Tubbax, and S. Donnay, Single-package direct-conversion receiver for 802.11a wireless LAN enhanced with fast converging digital compensation techniques, in IEEE MTT-S International Microwave Symposium Digest, Fort Worth, USA, 6–11 June 2004Google Scholar
  71. [Cooley65]
    J. W. Cooley and J. W. Tukey, An algorithm for machine calculation of complex Fourier series, Math. Comput., 19:297–301, 1965MATHMathSciNetGoogle Scholar
  72. [Coombs99]
    R. Coombs and R. Steele, Introducing microcells into macrocellular networks: A case study, IEEE Trans. Commun., 47(4):568–576, 1999Google Scholar
  73. [CRC59]
    Collins Radio Co., Collins kineplex systems, in Collins Radio Company 1959 General Catalog, 1959, pp. 67–70Google Scholar
  74. [Crols95]
    J. Crols, S. Donnay, M. Steyaert, and G. Gielen, A high-level design and optimization tool for analog RF receiver front-ends, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), November 1995, pp. 550–553Google Scholar
  75. [Crols98]
    J. Crols and M. Steyaert, Low-IF topologies for high-performance analog front-ends of fully integrated receivers, IEEE Trans. Circuits Syst. II, 45(3):269–282, 1998Google Scholar
  76. [Crow97]
    B. P. Crow, I. Widjaja, L. G. Kim, and P. T. Sakai, IEEE 802.11 wireless local area networks, IEEE Commun. Mag., 35(9):116–126, 1997Google Scholar
  77. [Czylwik97]
    A. Czylwik, Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization, in Proceedings of IEEE Vehicular Technology Conference, Phoenix, USA, 1997, pp. 865–869Google Scholar
  78. [d'Hainaut86]
    L. d'Hainaut, Interdisciplinarity in general education, in International Symposium on Interdisciplinarity in General Education, UNESCO, May 1986 (http://www.unesco.org/education/pdf/31_14.pdf)
  79. [DAB]
    ETSI ETS 300 401, Digital Audio Broadcasting (DAB); DAB to Mobile, Portable and Fixed Receivers, February 1995 (created: May 1992)Google Scholar
  80. [Daffara96]
    F. Daffara and O. Adami, A novel carrier recovery technique for orthogonal multicarrier systems, Eur. Trans. Telecommun., 7:323–334, 1996Google Scholar
  81. [Dai03]
    W.-J. Dai, D. Huang, C.-C. Chang, and M. Courtoy, Silicon virtual prototyping: The new cockpit for nanometer chip design, in Proceedings of Asia and South Pacific Design Automation Conference, January 2003, pp. 635–639Google Scholar
  82. [Davis88]
    A. Davis, A taxonomy for early stages of the software development life cycle, J. Syst. Software, 8(4):297–311, 1988Google Scholar
  83. [Davis02]
    W. R. Davis et al., A design environment for high-throughput low-power dedicated signal processing systems, IEEE J. Solid-State Circuits, 37(3):420–431, 2002Google Scholar
  84. [Debaillie01a]
    B. Debaillie, B. Côme, W. Eberle, S. Donnay, and M. Engels, Impact of front-end filters on bit error rate performances in WLAN—OFDM transceivers, in Proceedings of IEEE Radio and Wireless Conference, Boston, USA, August 2001, pp. 193–196Google Scholar
  85. [Debaillie01b]
    B. Debaillie, H. Minami, B. Côme, W. Eberle, and S. Donnay, Filter design methodology controlling the impact on bit error rate performances in WLAN—OFDM transceivers, in Proceedings of International Workshop on Multi-Carrier Spread Spectrum, Oberpfaffenhofen, Germany, September 2001Google Scholar
  86. [Debaillie02]
    B. Debaillie, H. Minami, B. Côme, W. Eberle, and S. Donnay, System-level filter design methodology for WLAN—OFDM transceivers, Microwave J., 45(5):268–279, 2002Google Scholar
  87. [DeLocht05]
    L. De Locht et al., Identification of contributions to nonlinear circuit behavior caused by multitone excitation, in Proceedings of ARFTG Conference, Florida, USA, November 2005, pp. 75–84Google Scholar
  88. [DeMan00]
    H. De Man, System design challenges in the post-PC era, in Proceedings of ACM/IEEE Design Automation Conference, Los Angeles, USA, June 2000Google Scholar
  89. [Deneire00a]
    L. Deneire, W. Eberle, M. Engels, B. Gyselinckx, S. Thoen, P. Vandenameele, and L. Van der Perre, Broadband wireless OFDM communication beyond standards, in Proceedings of International Symposium on Mobile Multimedia Systems and Applications, Delft, The Netherlands, December 2000, pp. 71–78Google Scholar
  90. [Deneire00b]
    L. Deneire, W. Eberle, M. Engels, B. Gyselinckx, S. Thoen, P. Vandenameele, and L. Van der Perre, Broadband wireless OFDM communication, Revue HF, 4:30–38, 2000Google Scholar
  91. [Deneire00c]
    L. Deneire, B. Gyselinckx, and M. Engels, Training sequence vs. cyclic prefix — A new look on single carrier communication, in Proceedings of IEEE Global Telecommunications Conference, San Francisco, USA, November 2000, pp. 1056–1060Google Scholar
  92. [Deneire03]
    L. Deneire, P. Vandenameele, L. Van der Perre, B. Gyselinckx, and M. Engels, A low complexity ML channel estimator for OFDM, IEEE Trans. Commun., 51(2):135–140, 2003Google Scholar
  93. [Despain79]
    A. M. Despain, Very Fast Fourier Transform algorithms hardware for implementation, IEEE Trans. Comput., 28(5):333–341, 1979MATHMathSciNetGoogle Scholar
  94. [Diesing94]
    N. Diesing, Why has industry been slow to embrace mixed analog—digital simulation tools? in Proceedings of IEEE International Symposium on Circuits and Systems, London, UK, May 1994, pp. 269– 274Google Scholar
  95. [Dobrovolný01]
    P. Dobrovolný, P. Wambacq, G. Vandersteen, D. Hauspie, S. Donnay, M. Engels, and I. Bolsens, The effective high-level modeling of a 5-GHz RF variable gain amplifier, in Proceedings of Workshop on Nonlinear Dynamics of Electronic Systems, Delft, The Netherlands, June 2001Google Scholar
  96. [Doelz57]
    M. L. Doelz, F. T. Heald, and D. L. Martin, Binary data transmission techniques for linear systems, Proc. IRE, 45:656–661, 1957Google Scholar
  97. [Donnay94]
    S. Donnay, K. Swings, G. Gielen, W. Sansen, W. Kruiskamp, and D. Leenaerts, A methodology for analog design automation in mixed-signal ASICs, in Proceedings of European Design and Test Conference, February 1994, pp. 530–534Google Scholar
  98. [Donnay00]
    S. Donnay et al., Chip-package co-design of a low-power 5-GHz RF front-end, Proc. IEEE, 88(10):1583–1597, 2000Google Scholar
  99. [Doufexi02]
    A. Doufexi, S. Armour, M. Butler, A. Nix, D. Bull, and J. McGeehan, A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards, IEEE Commun. Mag., 40(5):172–180, 2002Google Scholar
  100. [Duhamel90]
    P. Duhamel and M. Vetterli, Fast Fourier Transforms: A tutorial review and a state of the art, IEEE Signal Process. Mag., 19:259–299, 1990MATHMathSciNetGoogle Scholar
  101. [DuttaRoy99]
    A. Dutta-Roy, Networks for homes, IEEE Spectrum, 36(12):26–33, 1999Google Scholar
  102. [DVB-H]
    ETSI EN 302 304, Digital Video Broadcasting (DVB); Transmission System for Handheld Terminals (DVB-H), V1.1.1, November 2004Google Scholar
  103. [DVB-T]
    ETSI EN 300 744, Digital Video Broadcasting (DVB); Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television, V1.4.1, January 2001 (created: February 2000)Google Scholar
  104. [Eberle97a]
    W. Eberle, Wireless LAN activities including ASIC architecture and design methodology, presented at Workshop of the Innovationskolleg Kommunikationssysteme, Dresden, Germany, December 1997Google Scholar
  105. [Eberle97b]
    W. Eberle, L. Van der Perre, B. Gyselinckx, M. Engels, and I. Bolsens, Design aspects of an OFDM-based wireless LAN with regard to ASIC integration, in Proceedings of International OFDM Workshop, Braunschweig, Germany, September 1997Google Scholar
  106. [Eberle99a]
    W. Eberle, M. Badaroglu, V. Derudder, S. Thoen, P. Vandenameele, L. Van der Perre, M. Vergara, B. Gyselinckx, M. Engels, and I. Bolsens, Flexible OFDM transceiver for high-speed WLAN, in Proceedings of IEEE Vehicular Technology Conference, Amsterdam, The Netherlands, September 1999, pp. 2677–2681Google Scholar
  107. [Eberle99b]
    W. Eberle, L. Van der Perre, B. Gyselinckx, M. Engels, and S. Thoen, European Patent EP1030489 Multicarrier transceiver based on European Patent EP1083721, filed 1999 and granted on 6 July 2004Google Scholar
  108. [Eberle00a]
    W. Eberle, M. Badaroglu, V. Derudder, S. Thoen, P. Vandenameele, L. Van der Perre, M. Vergara, B. Gyselinckx, M. Engels, and I. Bolsens, A digital 80 Mb/s OFDM transceiver IC for wireless LAN in the 5-GHz band, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2000, pp. 74–75 and 448Google Scholar
  109. [Eberle00b]
    W. Eberle, M. Badaroglu, V. Derudder, L. Van der Perre, M. Vergara, B. Gyselinckx, M. Engels, I. Bolsens, and H. De Man, A flexible OFDM transceiver ASIC for high-speed wireless local networks, in Proceedings of International Conference on Telecommunications, Acapulco, Mexico, May 2000, pp. 1122–1128Google Scholar
  110. [Eberle00c]
    W. Eberle, L. Deneire, H. De Man, B. Gyselinckx, and M. Engels, Automatic gain control for OFDM-based wireless burst receivers, in Proceedings of International OFDM Workshop, Hamburg, Germany, September 2000Google Scholar
  111. [Eberle01a]
    W. Eberle, V. Derudder, L. Van der Perre, G. Vanwijnsberghe, M. Vergara, L. Deneire, B. Gyselinckx, M. Engels, I. Bolsens, and H. De Man, A digital 72 Mb/s 64-QAM OFDM transceiver for 5-GHz wireless LAN in 0.18 μm CMOS, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2001, pp. 336–337 and 462Google Scholar
  112. [Eberle01b]
    W. Eberle, V. Derudder, G. Vanwijnsberghe, M. Vergara, L. Deneire, L. Van der Perre, M. Engels, I. Bolsens, and H. De Man, 80 Mb/s QPSK and 72 Mb/s 64-QAM flexible and scalable digital OFDM transceiver ASICs for wireless local area networks in the 5-GHz band, IEEE J. Solid-State Circuits, 36(11):1829–1838, 2001Google Scholar
  113. [Eberle02a]
    W. Eberle, J. Tubbax, B. Côme, S. Donnay, G. Gielen, and H. De Man, OFDM—WLAN receiver performance improvement using digital compensation techniques, in Proceedings of IEEE Radio and Wireless Conference, Boston, USA, August 2002, pp. 111–114Google Scholar
  114. [Eberle02b]
    W. Eberle, B. Côme, S. Donnay, G. Gielen, and H. De Man, Mixed-signal compensation techniques for low-cost 802.11a receiver front-ends, in Proceedings of Communications Design Conference, San Jose, USA, September 2002Google Scholar
  115. [Eberle02c]
    W. Eberle, Putting it all together, in Wireless OFDM Systems: How to Make Them Work? M. Engels, Ed. Boston: Kluwer, 2002, pp. 151–189Google Scholar
  116. [Eberle02d]
    W. Eberle, European Patent EP03447080.7 Device with front-end reconfiguration, based on US Patent US60/370,642 A Wireless Communication Device, filed 2002Google Scholar
  117. [Eberle02e]
    W. Eberle, Flexible devices without shipping the engineer along with it: Panel on ‘WLAN, WPAN and IP: The PACWOMAN approach’, presented at International Symposium on Wireless Personal Multimedia Communications, Honolulu, USA, 27–30 October 2002Google Scholar
  118. [Eberle03]
    W. Eberle, G. Vandersteen, P. Wambacq, S. Donnay, G. Gielen, and H. De Man, Behavioral modeling and simulation of a mixed analog/ digital automatic gain control loop in a 5-GHz WLAN receiver, in Proceedings of Design, Automation and Test in Europe Conference, München, Germany, March 2003, pp. 642–647Google Scholar
  119. [Ebert99]
    J.-P. Ebert and A. Wolisz, Combined tuning of RF power and medium access control for WLANs, in Proceedings of IEEE International Workshop on Mobile Multimedia Communications, November 1999, pp. 74–82Google Scholar
  120. [Edenfeld04]
    D. Edenfeld, A. B. Kahng, M. Rodgers, and Y. Zorian, 2003 technology roadmap for semiconductors, IEEE Comput. Mag., 37(1):47–56, 2004Google Scholar
  121. [Edfors98]
    O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson, and P. O. Börjesson, OFDM channel estimation by singular value decomposition, IEEE Trans. Commun., 46(7):931–939, 1998Google Scholar
  122. [Eklund02]
    C. Eklund, R. B. Marks, K. L. Stanwood, and S. Wang, IEEE Standard 802.16: A technical overview of the WirelessMAN air interface for broadband wireless access, IEEE Commun. Mag., 40(6):98–107, 2002Google Scholar
  123. [Elliott82]
    D. F. Elliott and K. R. Rao, Fast Transforms — Algorithms, Analyses, Applications. New York: Academic, 1982Google Scholar
  124. [Elwan98]
    H. O. Elwan, T. B. Tarim, and M. Ismail, A digitally controlled dB-linear CMOS AGC for low voltage mixed signal applications, in Proceedings of Midwest Symposium on Circuits and Systems, Notre Dame, USA, August 1998, pp. 423–425Google Scholar
  125. [Engels98]
    M. Engels, W. Eberle, and B. Gyselinckx, Design of a 100-Mbps wireless local area network, in Proceedings of URSI International Symposium on Signals, Systems, and Electronics, Pisa, Italy, September/October 1998, pp. 253–256Google Scholar
  126. [Englund97]
    C. Englund, Future directions of personal multimedia communication space: Multimedia over IP, Technical Report, MIT Internet & Telecoms Convergence Consortium, 15 August 1997Google Scholar
  127. [Favalli96]
    M. Favalli, L. Benini, and G. De Micheli, Design for testability of gated-clock FSMs, in Proceedings of European Design and Test Conference, Paris, France, March 1996, pp. 589–596Google Scholar
  128. [Ferguson68]
    M. J. Ferguson, Communication at low data rates — Spectral analysis receivers, IEEE Trans. Commun. Technol., 16(5):657–668, 1968MathSciNetGoogle Scholar
  129. [Ferrari99]
    A. Ferrari and A. Sangiovanni-Vincentelli, System design: Traditional concepts and new paradigms, in International Conference on Computer Design, Austin, USA, pp. 2–12, October 1999Google Scholar
  130. [Fertner97]
    A. Fertner and C. Sölve, An adaptive gain control with a variable step size for use in high-speed data communication systems, IEEE Trans. Circuits Syst. II, 44(11):962–966, 1997Google Scholar
  131. [Flament02]
    M. Flament, Broadband wireless OFDM systems, Ph.D. Dissertation, Chalmers University of Technology, Göteborg, Sweden, November 2002Google Scholar
  132. [Fluckiger95]
    F. Fluckiger, Understanding Networked Multimedia. Englewood Cliffs, NJ: Prentice-Hall, 1995Google Scholar
  133. [Fodor03]
    G. Fodor, A. Eriksson, and A. Tuoriniemi, Providing quality of service in always best connected networks, IEEE Commun. Mag., 40(7):154–163, 2003Google Scholar
  134. [Fort03a]
    A. Fort, J.-W. Weijers, V. Derudder, W. Eberle, and A. Bourdoux, A performance and complexity comparison of auto-correlation and cross-correlation for OFDM burst synchronization, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, April 2003, pp. 341–344Google Scholar
  135. [Fort03b]
    A. Fort and W. Eberle, Synchronization and AGC proposal for IEEE 802.11a burst OFDM systems, in Proceedings of IEEE Global Telecommunications Conference, San Francisco, USA, December 2003, pp. 1335–1338Google Scholar
  136. [Fujisawa03]
    T. Fujisawa et al., A single-chip 802.11a MAC/PHY with a 32-b RISC processor, IEEE J. Solid-State Circuits, 38(11):2001–2009, 2003Google Scholar
  137. [Gajski83]
    D. Gajski and R. H. Kuhn, New VLSI tools, IEEE Comput., 16(2):11–14, 1983Google Scholar
  138. [Gardner96]
    F. M. Gardner and J. D. Baker, Simulation Techniques: Models of Communication Signals and Processes. New York: Wiley, 1996Google Scholar
  139. [Getreu90]
    I. E. Getreu, Behavioral modeling of analog blocks using the Saber simulator, in Proceedings of Midwest Symposium on Circuits and Systems, August 1989, pp. 977–980Google Scholar
  140. [Ghosh96]
    M. Ghosh, Analysis of the effect of impulsive noise on MC and SC QAM systems, IEEE Trans. Commun., 44(2):145–147, 1996Google Scholar
  141. [Gielen00]
    G. Gielen and R. Rutenbar, Computer-aided design of analog and mixed-signal integrated circuits, Proc. IEEE, 88(12):1825–1854, 2000Google Scholar
  142. [Gielen02]
    G. Gielen, Modeling and analysis techniques for system-level architectural design of telecom front-ends, IEEE Trans. Microwave Theory Techn., 50(1):360–368, 2002Google Scholar
  143. [Givargis02]
    T. Givargis, F. Vahid, and J. Henkel, System-level exploration for Pareto-optimal configurations in parameterized system-on-a-chip, IEEE Trans. VLSI Syst., 10(4):416–422, 2002Google Scholar
  144. [Goering03]
    R. Goering, Show time for ESL design? EEdesign, 30 June 2003Google Scholar
  145. [Goffioul02]
    M. I. Goffioul, P. Wambacq, G. Vandersteen, and S. Donnay, Analysis of nonlinearities in RF front-end architectures using a modified Volterra series approach, in Proceedings of Design, Automation and Test in Europe Conference, Paris, France, March 2002, pp. 352–356Google Scholar
  146. [Goldberg62]
    B. Goldberg, Applications of statistical communications theory, in Proceedings of West Point Army Conference, 1962; reprinted in IEEE Commun. Mag., 26–33, 1981Google Scholar
  147. [Gordon02]
    R. Gordon, A silicon virtual prototype is key in achieving design closure, EE Times, 19 August 2002Google Scholar
  148. [Gozdecki03]
    J. Gozdecki, A. Jajszczyk, and R. Stankiewicz, Quality of service terminology in IP networks, IEEE Commun. Mag., 41(3):153–159, 2003Google Scholar
  149. [Gupta01]
    R. Gupta and S. Rawat, The next HDL: If C++ is the answer, what was the question? in Proceedings of ACM/IEEE Design Automation Conference, June 2001, pp. 71–72Google Scholar
  150. [Gutierrez01]
    J. A. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and B. Heile, IEEE 802.15.4: A developing standard for low-power low-cost wireless personal area networks, IEEE Network, 15(5):12–19, 2001Google Scholar
  151. [Gyselinckx98]
    B. Gyselinckx, W. Eberle, M. Engels, C. Schurgers, S. Thoen, P. Vandenameele, and L. Van der Perre, A flexible architecture for future wireless local area networks, in Proceedings of International Conference on Telecommunications, Chalkidiki, Greece, June 1998, pp. 115–119Google Scholar
  152. [Gyselinckx99]
    B. Gyselinckx, W. Eberle, M. Engels, and M. Vergara, A 256-point FFT/IFFT for a 100 Mbit/s orthogonal frequency division multiplex modem, in Proceedings of International Conference on VLSI Design, Goa, India, January 1999Google Scholar
  153. [H1]
    ETSI ETS 300 652, HIPERLAN Type 1; Functional Specification, October 1996 (created: November 1991)Google Scholar
  154. [H2-MAC]
    ETSI ETS 101 761-1, Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data Link Control (DLC) Layer; Part 1: Basic Data Transport Functions, April 2000 (created: May 1999)Google Scholar
  155. [H2-PHY]
    ETSI ETS 101 475, Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Physical (PHY) Layer, April 2000 (created: December 1997)Google Scholar
  156. [Hajimiri98]
    A. Hajimiri and T. Lee, A general theory of phase noise in electrical oscillators, IEEE J. Solid-State Circuits, 33(2):179–194, 1998Google Scholar
  157. [Halim94]
    R. Y. Halim, J. Harris, M. Chadwick, T. Quan, N. Diesing, and E. MacRobbie, Mixed analog—digital simulation: The tools are here…is anyone really using them? in Proceedings of IEEE International Symposium on Circuits and Systems, May/June 1994, pp. 269–274Google Scholar
  158. [Harame03]
    D. L. Harame et al., Design automation methodology and rf/analog modeling for rf CMOS and SiGe BiCMOS technologies, IBM J. Res. Dev., 47(23):139–175, 2003Google Scholar
  159. [Haroun03]
    I. Haroun and F. Gouin, WLANs meet fiber optics — Evaluating 802.11a WLANs over fiber optics links, RF Des. Mag., 36–39, 2003Google Scholar
  160. [Harris96]
    Harris Semiconductor Corp., 1996 Wireless Communications Design Seminar Handbook, March 1996Google Scholar
  161. [Hashemi93]
    H. Hashemi, The indoor radio propagation channel, Proc. IEEE, 81(7):943–968, 1993Google Scholar
  162. [Hazy97]
    L. Hazy and M. El-Tanany, Synchronization of OFDM systems over frequency selective fading channels, in Proceedings of IEEE Vehicular Technology Conference, 1997, pp. 2094–2098Google Scholar
  163. [He96]
    S. He and M. Torkelson, A new approach to pipeline FFT processor, in Proceedings of IEEE International Parallel Processing Symposium, Honolulu, USA, April 1996, pp. 766–770Google Scholar
  164. [He98]
    S. He and M. Torkelson, Design and implementation of a 1024-point pipeline FFT processor, in Proceedings of Custom Integrated Circuits Conference, Santa Clara, USA, May 1998, pp. 131–134Google Scholar
  165. [Heideman84]
    M. T. Heideman, D. H. Johnson, and C. S. Burrus, Gauss and the history of the fast Fourier transform, IEEE Signal Proc. Mag., 1(4):14– 21, 1984Google Scholar
  166. [Henry02]
    P. S. Henry and H. Luo, WiFi: What's next? IEEE Commun. Mag., 40(12):66–72, 2002Google Scholar
  167. [Hirosaki81]
    B. Hirosaki, An orthogonally multiplexed QAM system using the Discrete Fourier Transform, IEEE Trans. Commun., 29:982–989, 1981Google Scholar
  168. [Hollemans94]
    W. Hollemans and A. Verschoor, Performance study of WaveLAN and Altair radio-LANs, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, September 1994, pp. 831–837Google Scholar
  169. [Honcharenko97]
    W. Honcharenko, J. P. Kruys, D. Y. Lee, and N. J. Shah, Broadband wireless access, IEEE Commun. Mag., 35(1):20–26, 1997Google Scholar
  170. [Honkasalo02]
    H. Honkasalo, K. Pehkonen, M. T. Niemi, and A. T. Leino, WCDMA and WLAN for 3G and beyond, IEEE Wireless Commun., 9(2):14–18, 2002Google Scholar
  171. [Huisken98]
    J. Huisken, F. van de Laar, M. Bekooij, G. Gielis, P. Gruijters, and F. Welten, A power-efficient single-chip OFDM demodulator and Channel decoder for multimedia broadcasting, IEEE J. Solid-State Circuits, 33(11):1793–1798, 1998Google Scholar
  172. [Hulbert96]
    A. P. Hulbert, A general purpose digital demodulator for VSAT and mobile spread spectrum CDMA signal reception, in Proceedings of ESA Workshop on DSP Techniques Applied to Space Communications, Barcelona, Spain, September 1996, pp. 11.45–11.59Google Scholar
  173. [Huys03]
    R. Huys, Optimalisatie van het acquisiteproces in laagvermogen draadloze communicatiesystemen, M.S. Thesis, Katholieke Universiteit Leuven, Belgium, May 2003Google Scholar
  174. [IEEE802.11a]
    IEEE Std. 802.11a, Amendment 1 to 802.11: High-speed physical layer in the 5-GHz band, 1999Google Scholar
  175. [IEEE802.11b]
    IEEE Std. 802.11b, Supplement to 802.11: Higher speed physical layer (PHY) extension in the 2.4-GHz band, 1999Google Scholar
  176. [IEEE802.11g]
    IEEE Std. 802.11g, Supplement to 802.11: Further higher data rate extension in the 2.4-GHz band, June 2003Google Scholar
  177. [IEEE802.11n]
    IEEE Std. 802.11n, Supplement to 802.11: Enhancements for higher throughput, draft proposal, January 2006Google Scholar
  178. [IEEE802.16]
    IEEE Std. 802.16-2004, Standard for local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, 2004Google Scholar
  179. [IEEE802.16e]
    IEEE Std. 802.16E-2005, Standard for local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, January 2006Google Scholar
  180. [IEEE830]
    IEEE Std. 830, Recommended practice for software requirements specifications, June 1998Google Scholar
  181. [IEEE1233]
    IEEE Std. 1233, Guide for developing system requirements specifications, 1998Google Scholar
  182. [Ikeda02]
    N. Ikeda, The spectrum as commons, RIETI 167 Discussion Paper Series 02-E002, March 2002Google Scholar
  183. [Jacome96]
    M. F. Jacome and S. W. Director, A formal basis for design process planning and management, IEEE Trans. CAD, 15(10):1197–1211, 1996Google Scholar
  184. [Jakes93]
    W. C. Jakes, Microwave Mobile Communications. New York: IEEE, 1993Google Scholar
  185. [Janssen96]
    G. J. M. Janssen, P. A. Stigter, and R. Prasad, Wideband indoor channel measurements and BER analysis of frequency selective multipath channels at 2.4, 4.75, and 11.5 GHz, IEEE Trans. Commun., 44(10):1272–1288, 1996Google Scholar
  186. [Jeruchim92]
    M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems. New York: Plenum, 1992Google Scholar
  187. [Jia00]
    Q.-W. Jia and G. Mathew, A novel AGC scheme for DFE read channels, IEEE Trans. Magn., 36(5):2210–2212, 2000Google Scholar
  188. [Johansson99]
    S. Johansson, D. Landström, and P. Nilsson, Silicon realization of an OFDM synchronization algorithm, in IEEE International Conference on Electronics, Circuits, and Systems, 1999, pp. 319–322Google Scholar
  189. [Jones98]
    V. K. Jones and G. C. Raleigh, Channel estimation for wireless OFDM systems, in Proceedings of IEEE Global Telecommunications Conference, Sydney, Australia, November 1998, pp. 980–985Google Scholar
  190. [Kabal86]
    P. Kabal and B. Sayar, Performance of fixed-point FFT's: Rounding and scaling considerations, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, March 1986, pp. 221–224Google Scholar
  191. [Kabulepa01]
    L. D. Kabulepa, M. Glesner, and T. Kella, Finite-precision analysis of an OFDM burst synchronization scheme, in Proceedings of IEEE Global Telecommunications Conference, San Antonio, USA, November 2001, pp. 310–314Google Scholar
  192. [Kaleh95]
    G. K. Kaleh, Channel equalization for block transmission systems, IEEE J. Sel. Areas Commun., 13(1):110–121, 1995Google Scholar
  193. [Kalet89]
    I. Kalet, The multitone channel, IEEE Trans. Commun., 37(2):119–124, 1989Google Scholar
  194. [Kalliokulju01]
    J. Kalliokulju, P. Meche, M. J. Rinne, J. Vallström, P. Varshney, and S.-G. Häggman, Radio access selection for multistandard terminals, IEEE Commun. Mag., 39(10):116–124, 2001Google Scholar
  195. [Kandukuri02]
    S. Kandukuri and S. Boyd, Optimal power control in interference-limited fading wireless channels with outage-probability specifications, IEEE Trans. Wireless Commun., 1(1):46–55, 2002Google Scholar
  196. [Karaoguz01]
    J. Karaoguz, High-rate wireless personal area networks, IEEE Commun. Mag., 39(12):96–102, 2001Google Scholar
  197. [Keutzer00]
    K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli, System-level design: Orthogonalization of concerns and platform-based design, IEEE Trans. Comput. Aid. Des., 19(12):1523–1543, 2000Google Scholar
  198. [Khaled05]
    N. Khaled, S. Thoen, and L. Deneire, Optimizing the joint transmit and receive MMSE design using mode selection, IEEE Trans. Commun., 53(4):730–737, 2005Google Scholar
  199. [Khoury98]
    J. M. Khoury, On the design of constant settling time AGC circuits, IEEE Trans. Circuits Syst. II, 45(3):283–294, 1998Google Scholar
  200. [Kienhuis99]
    A. C. J. Kienhuis, Design space exploration of stream-based dataflow architectures, Ph.D. Dissertation, Delft University of Technology, The Netherlands, January 1999Google Scholar
  201. [Kirsch69]
    A. L. Kirsch, P. R. Gray, and D. W. Hanna, Field-test results of the AN/GSC-10 (KATHRYN) digital data terminal, IEEE Trans. Commun. Technol., 17(2):118–128, 1969Google Scholar
  202. [Kneip02]
    J. Kneip et al., Single chip programmable baseband ASSP for 5 GHz wireless LAN applications, IEICE Trans. Electron., 85-c(2):359–367, 2002Google Scholar
  203. [Kumar92]
    K. Kumar and R. J. Welke, Methodology engineering: A proposal for situation-specific methodology construction, in Challenges and Strategies for Research in Systems Development. New York: Wiley, 1992, pp. 257–269Google Scholar
  204. [Lambrette97]
    U. Lambrette, M. Speth, and H. Meyr, OFDM burst frequency synchronization by single carrier training data, IEEE Commun. Lett., 1(2):46–48, 1997Google Scholar
  205. [Lampinen00]
    J. Lampinen, Multiobjective nonlinear Pareto-optimization. Pre-investigation Report, Lappeenranta University of TechnologyGoogle Scholar
  206. Lanschützer03]
    C. Lanschützer, A. Springer, L. Maurer, Z. Boos, and R. Weigel, Integrated adaptive LO leakage cancellation for W-CDMA direct upconversion transmitters, in Proceedings of IEEE Radio Frequency Integrated Circuits Symposium, Philadelphia, USA, June 2003, pp. 19–22Google Scholar
  207. [Lansford01]
    J. Lansford, A. Stephens, and R. Nevo, Wi-Fi (802.11b) and Bluetooth: Enabling coexistence, IEEE Network, 15:20–27, 2001Google Scholar
  208. [Lee96]
    E. Lee and A. Sangiovanni-Vincentelli, Comparing models of computation, in Proceedings of International Conference on Computer-Aided Design, San Jose, USA, 1996, pp. 234–241Google Scholar
  209. [Leenaerts01]
    D. Leenaerts, G. Gielen, and R. A. Rutenbar, CAD solutions and outstanding challenges for mixed-signal and RF IC design, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, San Jose, USA, 4–8 November 2001, pp. 270–277Google Scholar
  210. [Leeson66]
    D. B. Leeson, A simple model of feedback oscillator noise spectrum, Proc. IEEE, 54(2):329–330, 1966Google Scholar
  211. [LeFloch89]
    B. Le Floch, R. Halbert-Lassalle, and D. Castelain, Digital sound broadcasting to mobile receivers, IEEE Trans. Consum. Electron., 35(3):493–503, 1989Google Scholar
  212. [Lennard00]
    C. K. Lennard, P. Schaumont, G. de Jong, A. Haverinen, and P. Hardee, Standards for system-level design: Practical reality or solution in search of a question, in Proceedings of Design, Automation and Test in Europe Conference, Paris, France, March 2000, pp. 576–583Google Scholar
  213. [Lieverse99]
    P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers, A methodology for architecture exploration of heterogeneous signal processing systems, in Proceedings of IEEE Workshop on Signal Processing Systems, Taipei, Taiwan, October 1999, pp. 181–190Google Scholar
  214. [Lindoff00]
    B. Lindoff, Using a direct conversion receiver in EDGE terminals — A new DC offset compensation algorithm, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, London, UK, September 2000, pp. 959–963Google Scholar
  215. [Lovrich88]
    A. Lovrich, G. Troullinos, and R. Chirayil, An all digital automatic gain control, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, April 1988, pp. 1734–1737Google Scholar
  216. [Lucky03a]
    R. W. Lucky, Down into darkness or up into fog, IEEE Spectrum, 40(3):76, 2003Google Scholar
  217. [Luise96]
    M. Luise and R. Reggianninni, Carrier frequency acquisition and tracking for OFDM systems, IEEE Trans. Commun., 44(11):1590–1598, 1996Google Scholar
  218. [Luo03]
    H. Luo, Z. Jiang, B.-J. Kim, N. K. Shankaranarayanan, and P. Henry, Integrating wireless LAN and cellular data for the enterprise, IEEE Internet Comput., 7(2):25–33, 2003Google Scholar
  219. [Malmgren96]
    G. Malmgren, Impact of carrier frequency offset, Doppler spread and time synchronization errors in OFDM based single frequency networks, in Proceedings of IEEE Global Telecommunications Conference, 1996, pp. 729–733Google Scholar
  220. [Mandl00]
    C. Mandl, M. Bacher, G. Krampl, and F. Kuttner, 0.35 μm COFDM receiver chip for DVB-T, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2000, pp. 76–77Google Scholar
  221. [Mannion03]
    P. Mannion, Smart antenna boost IQ of WLANs, startup says, in EETimes/CommsDesign, 18 August 2003Google Scholar
  222. [Martone00]
    M. Martone, On the necessity of high performance RF front-ends in broadband wireless access employing multicarrier modulations (OFDM), in Proceedings of IEEE Global Telecommunications Conference, San Francisco, USA, November 2000, pp. 1407–1411Google Scholar
  223. [Mayaram00]
    K. Mayaram, D. C. Lee, S. Moinian, D. A. Rich, and J. Roychowdhury, Computer-aided circuit analysis tools for RFIC simulation: Algorithms, features, and limitations, IEEE Trans. Circuits Syst. II, 47(4):274–286, 2000Google Scholar
  224. [McCain]
    D. McCain and G. Xu, Rapid prototyping for a high speed wireless local area network radio (http://ww.ednc.com/products/aptix/db/Rapid_prototype.pdf)
  225. [McDermott97]
    T. McDermott, P. Ryan, M. Shand, D. Skellern, T. Percival, and N. Weste, A wireless LAN demodulator in a Pamette: Design and experience, in Proceedings of IEEE Symposium on FPGA-Based Custom Computing Machines, Napa Valley, USA, April 1997, pp. 40–45Google Scholar
  226. [Medbo98]
    J. Medbo and P. Schramm, Channel models for HIPERLAN/2 in different indoor scenarios, ETSI EP BRAN — 3ERI085B, March 1998Google Scholar
  227. [Medbo99]
    J. Medbo, H. Hallenberg, and J.-E. Berg, Propagation characteristics at 5 GHz in typical radio-LAN scenarios, in Proceedings of IEEE Vehicular Technology Conference Spring, Houston, USA, May 1999, pp. 185–189Google Scholar
  228. [Medbo00]
    J. Medbo and J.-E. Berg, Simple and accurate path loss modeling at 5 GHz in indoor environments with corridors, Proc. IEEE VTC, September 2000, pp. 30–36Google Scholar
  229. [MEDEA02]
    MEDEA+, The MEDEA+ Design Automation Roadmap, 3rd release, 2002Google Scholar
  230. [MEDEA05]
    MEDEA+, The MEDEA+ Design Automation Roadmap, 5th release, 2005Google Scholar
  231. [Mehrotra03]
    A. Mehrotra, L. van Ginneken, and Y. Trivedi, Design flow and methodology for 50M gate ASIC, in Proceedings of Asia and South Pacific Design Automation Conference, January 2003, pp. 640–647Google Scholar
  232. [Mehta01]
    M. Mehta, N. Drew, and C. Niedermeier, Reconfigurable terminals: An overview of architectural solutions, IEEE Commun. Mag., 39(8):82–89, 2001Google Scholar
  233. [Melander96]
    J. Melander, T. Widhe, and L. Wanhammar, Design of an 128-point FFT processor for OFDM applications, in Proceedings of IEEE International Conference on Electronics, Circuits, and Systems, Rhodos, Greece, October 1996, pp. 828–831Google Scholar
  234. [Melgaard94]
    H. Melgaard, Identification of physical models, Ph.D. Dissertation, Technical University of Denmark, Lyngby, 1994Google Scholar
  235. [Melsa96]
    P. J. W. Melsa, R. C. Younce, and C. E. Rohrs, Impulse response shortening for discrete multitone transceivers, IEEE Trans. Commun., 44(12):1662–1672, 1996Google Scholar
  236. [Merritt03]
    R. Merritt, Wi-Fi prices fall, EE Times, 29 August, 2003Google Scholar
  237. [Meyr98]
    H. Meyr, M. Moeneclay, and S. A. Fechtel, Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing. New York: Wiley, 1998Google Scholar
  238. [Meyr01]
    H. Meyr, Why we need all these MIPS in future wireless communication systems, presented at IEEE Workshop on Signal Processing Systems, Antwerp, Belgium, September 2001Google Scholar
  239. [Miliozzi00]
    P. Miliozzi, K. Kundert, K. Lampaert, P. Good, and M. Chian, A design system for RFIC: Challenges and solutions, Proc. IEEE, 88(10):1613– 1632, 2000Google Scholar
  240. [Minn00a]
    H. Minn, M. Zeng, and V. K. Bhargava, On timing offset estimation for OFDM systems, IEEE Commun. Lett., 4:242–244, 2000Google Scholar
  241. [Minn00b]
    H. Minn and V. K. Bhargava, A simple and efficient timing offset estimation for OFDM, in Proceedings of IEEE Vehicular Technology Conference, Tokyo, Japan, 2000, pp. 51–55Google Scholar
  242. [Minnis03]
    B. J. Minnis and P. A. Moore, A highly digitized multimode receiver architecture for 3G mobiles, IEEE Trans. Veh. Technol., 52(3):637– 653, 2003Google Scholar
  243. [Mitola95]
    J. Mitola, The software radio architecture, IEEE Commun. Mag., 33(5):26–38, 1995Google Scholar
  244. [Mohr00]
    W. Mohr and W. Konhauser, Access network evolution beyond third generation mobile communications, IEEE Commun. Mag., 38(12):122– 133, 2000; also: R. Becher, M. Dillinger, M. Haardt, and W. Mohr, Broad-band wireless access and future communication networks, Proc. IEEE, 89(1):58–75, 2001Google Scholar
  245. [Moore65]
    G. E. Moore, Cramming more components onto integrated circuits, Electronics, 38(8):82–85, 1965Google Scholar
  246. [Moose94]
    P. H. Moose, A technique for orthogonal frequency division multiplexing frequency offset correction, IEEE Trans. Commun., 42(10):2908–2914, 1994Google Scholar
  247. [Morelli99]
    M. Morelli and U. Mengali, An improved frequency offset estimator for OFDM applications, IEEE Commun. Lett., 3(3):75–77, 1999Google Scholar
  248. [Moretti03b]
    G. Moretti, Tight squeeze: RF design, in EDN, 27 November 2003Google Scholar
  249. [Morgan75]
    D. R. Morgan, On discrete-time AGC amplifiers, IEEE Trans. Circuits Syst., 22(2):135–146, 1975Google Scholar
  250. [Moult98]
    L. Moult and J. E. Chen, The K-model: RF IC modelling for communication systems simulation, in IEE Colloquium on Analog Signal Processing, October 1998Google Scholar
  251. [Muller03]
    G. Muller, The arisal of a system architect, 25 April 2003 (www.extra.research.philips.com/natlab/sysarch)
  252. [MüllerW98]
    S. H. Müller-Weinfurtner et al., Analysis of frame and frequency synchronizer for (bursty) OFDM, in Proceedings of IEEE Global Telecommunications Conference, November 1998, pp. 201–206Google Scholar
  253. [MüllerW01]
    S. H. Müller-Weinfurtner, Burst frame and frequency synchronization with a sandwich preamble, in Proceedings of IEEE Global Telecommunications Conference, San Antonio, USA, November 2001, pp. 1366–1370Google Scholar
  254. [Münch00]
    M. Münch, B. Wurth, R. Mehra, J. Sproch, and N. When, Automating RT-level operand isolation to minimize power consumption in datapaths, in Proceedings of Design, Automation and Test in Europe Conference, March 2000, pp. 624–631Google Scholar
  255. [Murthy01]
    P. K. Murthy, E. G. Cohen, and S. Rowland, System Canvas: A new design environment for embedded DSP and telecommunications systems, in Proceedings of International Symposium on Hardware/ Software Codesign, Copenhagen, Denmark, April 2001, pp. 54–59Google Scholar
  256. [Muschallik95]
    C. Muschallik, Influence of RF oscillators on an OFDM signal, IEEE Trans. Consum. Electron., 41(3):592–603, 1995Google Scholar
  257. [Muschallik00]
    C. Muschallik, Ein Beitrag zur Optimierung der Empfangbarkeit von Orthogonal-Frequency-Division-Multiplexing (OFDM) — Signalen, Ph.D. Dissertation, Technische Universität Braunschweig, Germany, 2000Google Scholar
  258. [Nakagawa03]
    M. Nakagawa, H. Zhang, and H. Sato, Ubiquitous homelinks based on IEEE 1394 and ultra wideband solutions, IEEE Commun. Mag., 41(4):74–82, 2003Google Scholar
  259. [Ness99]
    R. Ness, S. Thoen, L. Van der Perre, B. Gyselinckx, and M. Engels, Interference mitigation in OFDM-based WLANs, in Proceedings of Multi-Carrier Spread Spectrum Workshop, Oberpfaffenhofen, Germany, September 1999Google Scholar
  260. [Nicolay02]
    T. Nicolay, Theoretische und experimentelle Untersuchung eines breitbandigen, direktmischenden Empfängers unter besonderer Berücksichtigung des Einsatzes von Fuzzy Logic in der Leistungsverstärkung, Ph.D. Dissertation, Universität des Saarlandes, GermanyGoogle Scholar
  261. [Niemann98]
    R. Niemann, Hardware/Software Co-Design for Data Flow Dominated Embedded Systems. Boston: Kluwer, 1998Google Scholar
  262. [Note91]
    S. Note, W. Geurts, F. Catthoor, and H. De Man, Cathedral III: Architecture driven high-level synthesis for high throughput DSP applications, in Proceedings of ACM/IEEE Design Automation Conference, San Francisco, USA, June 1991, pp. 597–602Google Scholar
  263. [O'Brien89]
    J. O'Brien, J. Mather, and B. Holland, A 200 MIPS single-chip 1K FFT processor, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, pp. 166–167, 1989Google Scholar
  264. [Ohlson74]
    J. E. Ohlson, Exact dynamics of automatic gain control, IEEE Trans. Commun., 22(1):72–75, 1974Google Scholar
  265. [Ohr04]
    S. Ohr, Analog age pronounced live and well, EE Times, 18 February 2004Google Scholar
  266. [Ojanpera98]
    T. Ojanpera and R. Prasad, An overview of third-generation wireless personal communications: A European perspective, IEEE Pers. Commun., 5(6):59–65, 1998Google Scholar
  267. [Osgood97]
    K. Osgood et al., A flexible approach to 5-GHz U-NII band WLAN radio development, in Proceedings of Workshop on Applications of Radio Science, Australia, 21–23 September 1997, pp. 175–180Google Scholar
  268. [PageJ88]
    M. Page-Jones, Practical Guide to Structured Systems Design, 2nd edition. Englewood Cliffs, NJ: Prentice-Hall, 1988Google Scholar
  269. [Palicot03]
    J. Palicot and C. Roland, A new concept for wireless reconfigurable receivers, IEEE Commun. Mag., 41(7):124–132, 2003Google Scholar
  270. [Panda01]
    P. R. Panda, SystemC — A modeling platform supporting multiple design abstractions, in Proceedings of International Symposium on System Synthesis, Montreal, Canada, September 2001, pp. 75–80Google Scholar
  271. [Papalambros00]
    P. Y. Papalambros and D. J. Wilde, Principles of Optimal Design — Modeling and Computation. Cambridge: Cambridge University Press, 2000Google Scholar
  272. [Parekh01]
    S. N. Parekh, Evolution of wireless home networks: The role of policymakers in a standards-based market, M.S. Thesis, Massachusetts Institute of Technology, June 2001Google Scholar
  273. [Pareto06]
    V. Pareto, Manuale di economia politica con una introduzione alla scienza sociale. Milano: Società Editrice Libraria, 1906Google Scholar
  274. [Parhi92]
    K. K. Parhi, Systematic synthesis of DSP data format converters using life-time analysis and forward—backward register allocation, IEEE Trans. Circuits Syst. II, 39(7):423–440, 1992Google Scholar
  275. [Pasko00]
    R. Paško, L. Rijnders, P. Schaumont, S. Vernalde, and D. Durackova, High-performance flexible all-digital quadrature up and down converter chip, in Proceedings of Custom Integrated Circuits Conference, Orlando, USA, May 2000, pp. 43–46Google Scholar
  276. [Pasko02]
    R. Paško, S. Vernalde, and P. Schaumont, Techniques to evolve a C++ based system design language, in Proceedings of Design, Automation and Test in Europe Conference, Paris, France, March 2002, pp. 302– 309Google Scholar
  277. [Peled80]
    A. Peled and A. Ruiz, Frequency domain data transmission using reduced computational complexity algorithms, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Denver, USA, April 1980, pp. 964–967Google Scholar
  278. [Pereira01]
    J. M. Pereira, Reconfigurable radio: The evolving perspectives of different players, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, September/ October 2001, pp. 79–84Google Scholar
  279. [Perl87]
    J. Perl, A. Shpigel, and A. Reichman, Adaptive receiver for digital communication over HF channels, IEEE J. Sel. Areas Commun., 5(2):304– 308, 1987Google Scholar
  280. [Peterson96]
    L. Peterson and B. Davie, Computer Networks — A System Approach. San Francisco: Morgan Kaufman, 1996Google Scholar
  281. [Piaget72]
    J. Piaget, in Proceedings of Workshop ‘L'interdisciplinarité — Problèmes d'enseignement et de recherche dans les universités', Nice, France, September 1970 (OECD 1972), p. 144Google Scholar
  282. [Pollet99]
    T. Pollet and M. Peeters, Synchronization with DMT modulation, IEEE Commun. Mag., 37(4):80–86, 1999Google Scholar
  283. [Pollet00]
    T. Pollet, M. Peeters, M. Moonen, and L. Vandendorpe, Equalization for DMT-based broadband modems, IEEE Commun. Mag., 38(5):106–113, 2000Google Scholar
  284. [Potkonjak99]
    M. Potkonjak and J. Rabaey, Algorithm selection: A quantitative optimization-intensive approach, IEEE Trans. CAD, 18(5):524–532, 1999Google Scholar
  285. [Prasad99]
    R. Prasad, J. Schwarz DaSilva, and B. Arroyo-Fernández, Air interface access schemes for wireless communications, IEEE Commun. Mag., 37(9):104–105, 1999Google Scholar
  286. [Proakis95]
    J. G. Proakis, Digital Communications, 3rd edition. New York: McGraw Hill, 1995Google Scholar
  287. [Proakis96]
    J. G. Proakis and D. G. Manolakis, Digital Signal Processing, 3rd edition. Upper Saddle River, NJ: Prentice-Hall, 1996Google Scholar
  288. [Prodanov01]
    V. Prodanov, G. Palaskas, J. Glas, and V. Boccuzzi, A CMOS AGC-less IF strip for Bluetooth, in Proceedings of European Solid-State Circuits Conference, Villach, Austria, September 2001, pp. 488–491Google Scholar
  289. [Prophet99]
    G. Prophet, System-level design languages: To C or not to C? in EDN, pp. 135–146, 14 October 1999Google Scholar
  290. [Qu01]
    G. Qu, What is the limit of energy saving by dynamic voltage scaling, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, San Jose, USA, November 2001, pp. 560–563Google Scholar
  291. [Raab02]
    F. H. Raab et al., Power amplifiers and transmitters for RF and microwave, IEEE Trans. Microwave Theory Techn., 50(3):814–826, 2002Google Scholar
  292. [Rabaey96]
    J. M. Rabaey, Digital Integrated Circuits — A Design Perspective, 1st edition. Upper Saddle River, NJ: Prentice-Hall, 1996Google Scholar
  293. [Raivio01]
    Y. Raivio, 4G — Hype or reality, in Proceedings of IEE 3G Mobile Communication Technologies Conference, March 2001, pp. 346–350Google Scholar
  294. [Rappaport02]
    T. S. Rappaport, A. Annamalai, R. M. Buehrer, and W. H. Tranter, Wireless communications: Past events and a future perspective, IEEE Commun. Mag., 50(5):148–161, 2002Google Scholar
  295. [Razavi97a]
    B. Razavi, Design considerations for direct-conversion receivers, IEEE Trans. Circuits Syst. II, 44(6):428–435, 1997Google Scholar
  296. [Razavi97b]
    B. Razavi, RF Microelectronics. Englewood Cliffs, NJ: Prentice-Hall, 1997Google Scholar
  297. [Razavi99]
    B. Razavi, A 2.4 GHz CMOS receiver for IEEE 802.11 wireless LANs, IEEE J. Solid-State Circuits, 34(10):1382–1385, 1999Google Scholar
  298. [Rhett02]
    W. Rhett Davis et al., A design environment for high-throughput, low-power dedicated signal processing systems, IEEE J. Solid State Circuits, 37(3):420–431, 2002Google Scholar
  299. [Riezenman01]
    M. J. Riezenman, The rebirth of radio, IEEE Spectrum, 38(1):62–64, 2001Google Scholar
  300. [Rijnders00]
    L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens, High-level analysis of clock regions in a C++ system description, in IEICE Trans. Fund. Electron. Commun. Comput. Sci. — Special Section on VLSI Design and CAD Algorithms, E83-A(12):2631–2632, 2000Google Scholar
  301. [Rissone02]
    P. Rissone and G. Cascini, Creativity as means for technical innovation, in Proceedings of SEFI Annual Conference, Firenze, Italy, September 2002Google Scholar
  302. [Robles01]
    T. Robles et al., QoS support for an all-IP system beyond 3G, IEEE Commun. Mag., 39(8):64–72, 2001Google Scholar
  303. [Rohling97]
    H. Rohling, R. Grünheid, and K. Brüninghaus, Comparison of multiple access schemes for an OFDM downlink system, in Proceedings of International Workshop on Multi-Carrier Spread Spectrum, Oberpfaffenhofen, Germany, April 1997Google Scholar
  304. [Rose01]
    B. Rose, Home networks: A standards perspective, IEEE Commun. Mag., 12:78–85, 2001Google Scholar
  305. [Rosenfield92]
    P. L. Rosenfield, The potential of transdisciplinary research for sustaining and extending linkages between the health and social sciences, Soc. Sci. Med., 35(11):1343–1357Google Scholar
  306. [Rowson97]
    J. A. Rowson and A. Sangiovanni-Vincentelli, Interface-based design, in Proceedings of ACM/IEEE Design Automation Conference, Anaheim, USA, June 1997, pp. 178–183Google Scholar
  307. [Rumbaugh98]
    J. Rumbaugh, G. Booch, and I. Jacobson, The Unified Modeling Language Reference Manual. Reading, MA: Addison-Wesley, 1998Google Scholar
  308. [Ryan95]
    P. Ryan, T. Percival, and D. Skellern, A 16-point FFT IC for wireless communication systems, in Workshop on Applications of Radio Science (WARS) Digest, Canberra, Australia, June 1995Google Scholar
  309. [Ryan01]
    P. Ryan et al., A single chip PHY COFDM modem for IEEE 802.11a with integrated ADCs and DACs, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, 2001, pp. 338–339Google Scholar
  310. [Sakiyama03]
    K. Sakiyama, P. Schaumont, and I. Verbauwhede, Finding the best system design flow for a high-speed JPEG encoder, in Proceedings of Asia and South Pacific Design Automation Conference, Kitakyushu, Japan, January 2003, pp. 577–578Google Scholar
  311. [Sakurai03]
    T. Sakurai, Perspectives on power-aware electronics, in IEEE Solid-State Circuits Conference Digest, San Francisco, USA, February 2003, pp. 26–29Google Scholar
  312. [Saleh83]
    A. A. M. Saleh and D. C. Cox, Improving the power-added efficiency of FET amplifiers operating with varying-envelope signals, IEEE Trans. Microwave Theory Techn., 83(1):51–56, 1983Google Scholar
  313. [Saleh87]
    A. A. M. Saleh and R. A. Valenzuela, A statistical model for multipath propagation, IEEE Trans. Sel. Areas Commun., 5(2):128–137, 1987Google Scholar
  314. [Saltzberg67]
    B. R. Salzberg, Performance of an efficient parallel data transmission system, IEEE Trans. Commun., 15(6):805–813, 1967Google Scholar
  315. [Sampath02]
    H. Sampath, S. Talwar, J. Tellado, V. Erceg, and A. Paulraj, A fourth-generation MIMO–OFDM broadband wireless system: Design, performance, and field trial results, IEEE Commun. Mag., 40(9):143–149, 2002Google Scholar
  316. [Sampei92]
    S. Sampei and K. Feher, Adaptive DC-offset compensation algorithm for burst mode operated direct conversion receivers, in Proceedings of IEEE Vehicular Technology Conference, May 1992, pp. 93–96Google Scholar
  317. [Saracco03]
    R. Saracco, Forecasting the future of information technology: How to make research investment more cost-effective? IEEE Commun. Mag., 41(12):38–45, 2003Google Scholar
  318. [Sari94]
    H. Sari, G. Karam, and I. Jeanclaude, Frequency-domain equalization of mobile radio and terrestrial broadcast channels, in Proceedings of IEEE Global Telecommunications Conference, San Francisco, USA, November 1994, pp. 1–5Google Scholar
  319. [Sari95]
    H. Sari, G. Karam, and I. Jeanclaude, Transmission techniques for digital terrestrial TV broadcasting, IEEE Commun. Mag., 33(2):100– 109, 1995. See also comments in IEEE Commun. Mag., 33(11):22–26, 1995Google Scholar
  320. [Savage03]
    P. Savage, The perfect handheld: Dream on, IEEE Spectrum, 40(1):44– 46, 2003Google Scholar
  321. [Scaglione99]
    A. Scaglione, S. Barbarossa, and G. B. Giannakis, Filterbank transceivers optimizing information rate in block transmissions over dispersive channels, IEEE Trans. Inform. Theory, 45(3):1019–1032, 1999MATHMathSciNetGoogle Scholar
  322. [Schaumont98]
    P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and I. Bolsens, A design environment for the design of complex high-speed ASICs, in Proceedings of ACM/IEEE Design Automation Conference, San Francisco, USA, June 1998, pp. 315–320Google Scholar
  323. [Schaumont99a]
    P. Schaumont, R. Cmar, S. Vernalde, M. Engels, and I. Bolsens, Hardware reuse at the behavioral level, in Proceedings of ACM/IEEE Design Automation Conference, New Orleans, USA, June 1999, pp. 784–789Google Scholar
  324. [Schaumont99b]
    P. Schaumont, R. Cmar, S. Vernalde, and M. Engels, A 10-Mb/s upstream cable modem with automatic equalization, in Proceedings of ACM/IEEE Design Automation Conference, New Orleans, USA, June 1999, pp. 337–340Google Scholar
  325. [Schaumont01a]
    P. Schaumont, I. Verbauwhede, and H. De Man, Post-PC systems, architectures and design challenges, presented at CANDE 2001 Workshop, Jackson Hole, USA, September 2001Google Scholar
  326. [Schaumont01b]
    P. Schaumont, I. Verbauwhede, M. Sarrafzeadeh, and K. Keutzer, A quick safari through the reconfiguration jungle, in Proceedings of ACM/IEEE Design Automation Conference, June 2001, pp. 18–22Google Scholar
  327. [Schlebusch03]
    H.-J. Schlebusch et al., Transaction based design: Another buzzword or the solution to a design problem? in Proceedings of Design, Automation and Test in Europe Conference, München, Germany, March 2003Google Scholar
  328. [Schmidl97]
    T. Schmidl and D. C. Cox, Robust frequency and timing synchronization for OFDM, IEEE Trans. Commun., 45(12):1613–1621, 1997Google Scholar
  329. [Schön83]
    [Schön83] D. Schön, The Reflective Practitioner. New York: Basic Books, 1983Google Scholar
  330. [Schurgers02a]
    C. Schurgers, Energy-aware communication systems, Ph.D. Dissertation, University of California, Los Angeles, USA, November 2002Google Scholar
  331. [Schurgers02b]
    C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, Optimizing sensor networks in the energy—latency—density design space, IEEE Trans. Mobile Comput., 1(1):70–80, 2002Google Scholar
  332. [Schwanenberger03]
    T. Schwanenberger, M. Ipek, S. Roth, and H. Schemmann, A multi standard single-chip transceiver covering 5.15 to 5.85 GHz, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2003, pp. 350–351Google Scholar
  333. [Shakkottai03]
    S. Shakkottai, T. S. Rappaport, and P. C. Karlsson, Cross-layer design for wireless networks, IEEE Commun. Mag., 41(10):74–80, 2003Google Scholar
  334. [Shan88]
    T. J. Shan and T. Kailath, Adaptive algorithms with an automatic gain control feature, IEEE Trans. Circuits Syst. II, 35(1):122–127, 1988. See also S. Karni and G. Zeng, Comments, with Reply, on ‘Adaptive algorithms with an automatic gain control feature’ by T. J. Shan and T. Kailath, IEEE Trans. Circuits Syst. II, 37(7):974–975, 1990Google Scholar
  335. [Shen02]
    M. Shen, L.-R. Zheng, and H. Tenhunen, Cost and performance analysis for mixed-signal system implementation: System-on-chip or system-on-package? IEEE Trans. Electron. Packag. Manufact., 25(4):262–272, 2002Google Scholar
  336. [Sheng92]
    S. Sheng, A. Chandrakasan, and R. W. Brodersen, A portable multimedia terminal, IEEE Commun. Mag., 30(12):64–75, 1992Google Scholar
  337. [Sherif02]
    M. H. Sherif, Intelligent homes: A new challenge in telecommunications standardization, IEEE Commun. Mag., 40(1):8, 2002Google Scholar
  338. [Shibutani91]
    M. Shibutani, T. Kanai, K. Emura, and J. Namiki, Feasibility studies on an optical fiber feeder system for microcellular mobile communication systems, in Proceedings of IEEE International Conference on Communications, June 1991, pp. 1176–1181Google Scholar
  339. [Shimozawa96]
    M. Shimozawa, K. Kawakami, K. Itoh, A. Iida, and O. Ishida, A novel sub-harmonic pumping direct conversion receiver with high instantaneous dynamic range, in IEEE MTT-S International Microwave Symposium Digest, San Francisco, USA, June 1996, pp. 819–822Google Scholar
  340. [Shiue98]
    M.-T. Shiue, K.-H. Huang, C.-C. Lu, C.-K. Wang, and W. I. Way, A VLSI design of dual-loop automatic gain control for dual-mode QAM/VSB CATV modem, in Proceedings of IEEE International Symposium on Circuits and Systems, Monterey, USA, May/June 1998, pp. 490–493Google Scholar
  341. [Siegmund01]
    R. Siegmund and D. Müller, SystemCSV: An extension of SystemC for mixed multi-level communication modeling and interface-based system design, in Proceedings of Design, Automation and Test in Europe Conference, München, Germany, March 2001, pp. 26–32Google Scholar
  342. [Siegmund02]
    R. Siegmund and D. Müller, Automatic synthesis of communication controller hardware from protocol specifications, IEEE Des. Test Comput., 19(4):84–95, 2002Google Scholar
  343. [Simoens02]
    S. Simoens, M. de Courville, F. Bourzeix, and P. de Champs, New I/Q imbalance modeling and compensation in OFDM systems with frequency offset, in Proceedings of International Symposium on Personal, Indoor, and Mobile Radio Communications, Lisboa, Portugal, September 2002, pp. 561–566Google Scholar
  344. [Singh95]
    D. Singh et al., Power conscious CAD tools and methodologies: A perspective, Proc. IEEE, 83(4):570–594, 1995Google Scholar
  345. [Sinyanskiy98]
    V. Sinyanskiy, J. Cukier, A. Davidson, and T. Poon, Front-end of a digital ATV receiver, IEEE Trans. Consum. Electron., 44(3):817–822, 1998Google Scholar
  346. [Skellern97]
    D. J. Skellern et al., A high-speed wireless LAN, IEEE Micro, 17(1):40–47, 1997Google Scholar
  347. [Smith97]
    P. J. Smith, M. Shafi, and H. Gao, Quick simulation: A review of importance sampling techniques in communications systems, IEEE J. Sel. Areas Commun., 15(4):597–613, 1997Google Scholar
  348. [Smulders02]
    P. Smulders, Exploiting the 60-GHz band for local wireless multimedia access: Prospects and future directions, IEEE Commun. Mag., 40(1):140–147, 2002Google Scholar
  349. [Sony99]
    Sony International Europe, Preamble structures for Hiperlan type 2 systems, ETSI BRAN, Technical Report, HL13SON1a, 1999Google Scholar
  350. [Souza03]
    C. Souza, Intersil, a leading WLAN chip player, exits a market ripe for consolidation, in EE Times, 22 July 2003Google Scholar
  351. [Sperling03]
    E. Sperling, Is Moore's law irrelevant? in Electronic News, 14 August 2003Google Scholar
  352. [Speth97]
    M. Speth, F. Classen, and H. Meyr, Frame synchronization in OFDM systems in frequency selective fading channels, in Proceedings of IEEE Vehicular Technology Conference, Phoenix, USA, May 1997, pp. 1807–1811Google Scholar
  353. [Speth98]
    M. Speth, D. Daecke, and H. Meyr, Minimum overhead burst synchronization for OFDM-based broadband transmission, in Proceedings of IEEE Global Telecommunications Conference, Sydney, Australia, November 1998, pp. 2777–2782Google Scholar
  354. [Speth01]
    M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, Optimum receiver design for OFDM-based broadband transmission: Part II, IEEE Trans. Commun., 49(4):571–578, 2001Google Scholar
  355. [SRC00]
    Semiconductor Research Corporation (SRC), Research needs for mixed-signal technologies. Report of the 2000 Mixed-Signal Task Force, 25 October 2000Google Scholar
  356. [Srikanteswara03]
    S. Srikanteswara, R. C. Palat, J. H. Reed, and P. Athanas, An overview of configurable computing machines for software radio handsets, IEEE Commun. Mag., 41(7):134–141, 2003Google Scholar
  357. [Stantchev99]
    B. Stantchev and G. Fettweis, Optimum frame synchronization for orthogonal FSK in flat fading channels and one burst application, Proc. IEEE WCNC, September 1999, pp. 1070–1074Google Scholar
  358. [Steele00]
    R. Steele, Beyond 3G, in Proceedings of IEEE International Zurich Seminar on Broadband Communications, 2000, pp. 1–7Google Scholar
  359. [Stoltermann92]
    E. Stolterman, How system designers think — About design and methods, Scand. J. Inform. Syst., 4:137–150, 1992Google Scholar
  360. [Struhsaker03]
    T. Struhsaker, Trends in WLAN silicon integration, panel on Key technologies enabling success of Wi-Fi public access networks, presented at IEEE Wireless Communications and Networking Conference, New Orleans, USA, March 2003Google Scholar
  361. [Swartzlander84]
    E. Swartzlander and G. Hallnor, High speed FFT processor implementation, in Proceedings of IEEE Workshop on VLSI Signal Processing, November 1984, pp. 27–34Google Scholar
  362. [SystemC]
    The Open SystemC Initiative (OSCI) (http://www.systemc.org)
  363. [Taura96]
    K. Taura, M. Tsujishita, M. Takeda, H. Kato, M. Ishida, and Y. Ishida, A digital audio broadcasting (DAB) receiver, IEEE Trans. Consum. Electron., 42(3):322–327, 1996Google Scholar
  364. [Teger02]
    S. Teger and D. J. Waks, End-user perspectives on home networking, IEEE Commun. Mag., 40(4):114–119, 2002Google Scholar
  365. [Tellado99]
    J. Tellado-Mourelo, Peak to average power reduction for multicarrier modulation, Ph.D. Dissertation, Stanford University, USA, September 1999Google Scholar
  366. [Thoen02a]
    S. Thoen, Transmit optimization for OFDM/SDMA-based wireless local area networks, Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, May 2002Google Scholar
  367. [Thoen02b]
    S. Thoen, L. Van der Perre, and M. Engels, Modeling the channel time-variance for fixed wireless communications, IEEE Commun. Lett., 6(8):331–333, 2002Google Scholar
  368. [Thompson83]
    C. D. Thompson, Fourier transforms in VLSI, IEEE Trans. Comput., 32(11):1047–1057, 1983MATHGoogle Scholar
  369. [Thomson02]
    J. Thomson et al., An integrated 802.11a baseband and MAC processor, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, 2002, pp. 126–127Google Scholar
  370. [Tolvanen98]
    J.-P. Tolvanen, Incremental method engineering with modeling tools, Ph.D. Dissertation, University of Jyväskylä, 1998Google Scholar
  371. [Trân-Thông76]
    [Trân-Thông76] Trân-Thông and B. Liu, Fixed-point fast Fourier transform error analysis, IEEE Trans. Acoust. Speech Signal Process., 24(6):563–573, 1976Google Scholar
  372. [Truman98]
    T. E. Truman, T. Pering, R. Doering, and R. W. Brodersen, The InfoPad multimedia terminal: A portable device for wireless information access, IEEE Trans. Comput., 47(10):1073–1087, 1998Google Scholar
  373. [Tubbax04]
    J. Tubbax, A digital approach to low-cost low-power broadband radios, Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, April 2004Google Scholar
  374. [Tufvesson99]
    F. Tufvesson, O. Edfors, and M. Faulkner, Time and frequency synchronization for OFDM using PN-sequence preambles, in Proceedings of IEEE Vehicular Technology Conference, 1999, pp. 2203–2207Google Scholar
  375. [UML]
    OMG, Unified Modeling Language (http://www.omg.org/uml)
  376. [Vanassche01]
    P. Vanassche, G. Gielen, and W. Sansen, Efficient time-domain simulation of telecom front-ends using a complex damped exponential signal model, in Proceedings of Design, Automation and Test in Europe (DATE) Conference, March 2001, pp. 169–175Google Scholar
  377. [vandeBeek95]
    J. J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Börjesson, On channel estimation in OFDM systems, in Proceedings of IEEE Vehicular Technology Conference, Chicago, USA, 1995, pp. 815–819Google Scholar
  378. [vandeBeek97]
    J. J. van de Beek, M. Sandell, and P. O. Börjesson, ML estimation of time and frequency offset in OFDM systems, IEEE Trans. Signal Process., 45:1800–1805, 1997MATHGoogle Scholar
  379. [Vandenameele00]
    P. Vandenameele, Space division multiple access for wireless local area networks, Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, October 2000Google Scholar
  380. [VanderPerre98]
    L. Van der Perre, S. Thoen, P. Vandenameele, B. Gyselinckx, and M. Engels, Adaptive loading strategy for a high speed OFDM-based WLAN, in Proceedings of IEEE Global Communications Conference, Sydney, Australia, November 1998, pp. 1936–1940Google Scholar
  381. [Vandersteen00]
    G. Vandersteen et al., A methodology for efficient high-level dataflow simulation of mixed-signal front-ends of digital telecom transceivers, in Proceedings of ACM/IEEE Design Automation Conference, Los Angeles, USA, June 2000, pp. 440–445Google Scholar
  382. [Vandersteen01]
    G. Vandersteen, P. Wambacq, S. Donnay, W. Eberle, and Y. Rolain, FAST — An efficient high-level dataflow simulator of mixed-signal front-ends of digital telecom transceivers, in Low-Power Design Techniques and CAD Tools for Analog and RF Integrated Circuits, P. Wambacq, G. Gielen, and J. Gerrits, Eds. Boston: Kluwer, 2001, pp. 43–59Google Scholar
  383. [VanDriessche03]
    J. Van Driessche, G. Cantone, W. Eberle, B. Côme, and S. Donnay, Transmitter cost/efficiency exploration for 5-GHz WLAN, in Proceedings of IEEE Radio and Wireless Conference, Boston, USA, August 2003, pp. 35–38Google Scholar
  384. [vanLamsweerde00]
    A. van Lamsweerde, Requirements engineering in the year 00: A research perspective, in Proceedings of International Conference on Software Engineering, Limerick, Ireland, June 2000Google Scholar
  385. [vanLamsweerde03]
    A. van Lamsweerde and E. Letier, From object orientation to goal orientation: A paradigm shift for requirements engineering, in Proceedings of Workshop on Radical Innovations of Software and Systems Engineering, Venice, Italy, 2003Google Scholar
  386. [Vanmeerbeeck01]
    G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels, and I. Bolsens, Hardware/software partitioning of embedded system in OCAPI-xl, in Proceedings of International Symposium on Hardware/Software Codesign, April 2001, pp. 30–35Google Scholar
  387. [vanNee99]
    R. van Nee, G. Awater, M. Morikura, H. Takanashi, M. Webster, and K. W. Halford, New high-rate wireless LAN standards, IEEE Commun. Mag., 37(12):82–88, 1999Google Scholar
  388. [VanRompaey96]
    K. Van Rompaey, D. Verkest, I. Bolsens, and H. De Man, CoWare — A design environment for heterogeneous hardware/software systems, in Proceedings of European Design Automation Conference, September 1996, pp. 252–257Google Scholar
  389. [Vassiliou99]
    I. Vassiliou, Design methodologies for RF and mixed-signal systems, Ph.D. Dissertation, University of California at Berkeley, USA, 1999Google Scholar
  390. [Veithen99]
    D. Veithen et al., A 70 Mb/s variable-rate DMT-based modem for VSDL, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 1999, pp. 248–249Google Scholar
  391. [Velez02]
    F. J. Velez and L. M. Correia, Mobile broadband services: Classification, characterization, and deployment scenarios, IEEE Commun. Mag., 40(4):142–150, 2002Google Scholar
  392. [Vergara98a]
    M. Vergara, M. Strum, W. Eberle, and B. Gyselinckx, A 195 kFFT/s 256-point high performance FFT/IFFT processor for OFDM applications, in Proceedings of SBT/IEEE International Telecommunications Symposium, São Paulo, Brazil, August 1998, pp. 273–278Google Scholar
  393. [Vergara98b]
    M. Vergara, Projeto de uma macro-célula FFT/IFFT para aplicações sem fio, M.S. Thesis, Universidade de São Paulo, Brazil, 1998Google Scholar
  394. [Verilog]
    IEEE Std. 1364–1995, Verilog Language, 1995 168Google Scholar
  395. [Verkest00]
    D. Verkest, J. Kunkel, and F. Schirrmeister, System level design using C++, in Proceedings of Design, Automation and Test in Europe Conference, Paris, France, March 2000, pp. 74–81Google Scholar
  396. [Verkest01a]
    D. Verkest, W. Eberle, P. Schaumont, B. Gyselinckx, and S. Vernalde, C++ based system design of a 72 Mb/s OFDM transceiver for wireless LAN, in Proceedings of Custom Integrated Circuits Conference, San Diego, USA, May 2001, pp. 433–439Google Scholar
  397. [Vermeulen00]
    F. Vermeulen, F. Catthoor, D. Verkest, and H. De Man, Formalized three-layer system-level model and reuse methodology for embedded data-dominated applications, IEEE Trans. VLSI Syst., 8(2):207–216, 2000Google Scholar
  398. [Vermeulen02]
    F. Vermeulen, Reuse of system-level design components in data-dominated digital systems, Ph.D. Dissertation, Katholieke Universiteit Leuven, December 2002Google Scholar
  399. [Vernalde99]
    S. Vernalde, P. Schaumont, and I. Bolsens, An object-oriented programming approach for hardware design, in Proceedings of IEEE Computer Society Workshop on VLSI, Orlando, USA, April 1999, pp. 68–73Google Scholar
  400. [VHDL]
    IEEE Std. 1076-1993, VHDL Language, 1993 168Google Scholar
  401. [Victor60]
    W. K. Victor and M. H. Brockman, The application of linear servo theory to the design of AGC loops, Proc. IRE, 48:234–238, 1960Google Scholar
  402. [Walker94]
    S. Walker, A high speed feed forward pseudo automatic gain control circuit for an amplifier cascade, in IEEE MTT-S International Microwave Symposium Digest, San Diego, USA, May 1994, pp. 941– 944Google Scholar
  403. [Walzman73]
    T. Walzman and M. Schwartz, Automatic equalization using the discrete frequency domain, IEEE Trans. Inform. Theory, 19(1):59–68, 1973Google Scholar
  404. [Wambacq98]
    P. Wambacq and W. M. Sansen, Distortion Analysis of Analog Integrated Circuits. Boston: Kluwer, 1998Google Scholar
  405. [Wambacq00]
    P. Wambacq, P. Dobrovolný, S. Donnay, M. Engels, and I. Bolsens, Compact modeling of nonlinear distortion in analog communication circuits, in Proceedings of Design, Automation and Test in Europe Conference, Paris, France, March 2000, pp. 350–354Google Scholar
  406. [Wambacq01]
    P. Wambacq, G. Vandersteen, J. Phillips, J. Roychowdhury, W. Eberle, B. Yang, D. Long, and A. Demir, CAD for RF circuits, in Proceedings of Design, Automation and Test in Europe Conference, München, Germany, March 2001, pp. 520–526Google Scholar
  407. [Wambacq02a]
    P. Wambacq, G. Vandersteen, P. Dobrovolny, M. Goffioul, W. Eberle, M. Badaroglu, and S. Donnay, High-level simulation and modeling tools for mixed-signal front-ends of wireless systems, in Proceedings of Workshop on Advances in Analog Circuit Design (AACD), Spa, Belgium, March 2002Google Scholar
  408. [Wambacq02b]
    P. Wambacq, G. Vandersteen. P. Dobrovolny, M. Goffioul, W. Eberle, M. Badaroglu, and S. Donnay, High-level simulation and modeling tools for mixed-signal front-ends of wireless systems, in Analog Circuit Design: Structured Mixed-Mode Design, Multi-Bit Sigma Delta Converters, Short Range RF Circuits, M. Steyaert, A. H. M. van Roermund, J. H. Huijsing, Eds. Boston: Kluwer, 2002, pp. 77–94Google Scholar
  409. [Wang89]
    P. C. Wang and C. R. Ward, A software AGC scheme for integrated communication receivers, in Proceedings of IEEE National Aerospace and Electronics Conference, 1989, pp. 2085–2091Google Scholar
  410. [Weber75]
    W. J. Weber, Decision-directed automatic gain control for MAPSK systems, IEEE Trans. Commun., 23(5):510–517, 1975MATHGoogle Scholar
  411. [Weinstein71]
    S. B. Weinstein and P. M. Ebert, Data transmission by frequency division multiplexing using the Discrete Fourier Transform, IEEE Trans. Commun., 19(5):628–634, 1971Google Scholar
  412. [Weiser91]
    M. Weiser, The computer for the 21st century, Sci. Am., 265(3):94–104, 1991Google Scholar
  413. [Weste97]
    N. Weste et al., A 50-MHz 16-point FFT processor for WLAN applications, in Proceedings of IEEE Custom Integrated Circuits Conference, Santa Clara, USA, May 1997, pp. 457–460Google Scholar
  414. [Wheeler03]
    B. Wheeler and L. Gwennap, A Guide to Wireless LAN Chip Sets, 1st edition. Sunnyvale, CA: The Linley Group, 2003Google Scholar
  415. [Wickelgren96]
    I. J. Wickelgren, Local area networks go wireless, IEEE Spectrum, 33(9):34–40, 1996Google Scholar
  416. [Wiesler01]
    A. Wiesler, Parametergesteuertes Software Radio für Mobilfunk-systeme, Ph.D. Dissertation, Universität Karlsruhe (TH), Germany, May 2001Google Scholar
  417. [Williams03]
    R. Williams, Improving efficiency when detecting WLAN preambles, in CommsDesign, 18 November 2003 (http://www.commsdesign.com/story/OEG20031118S0024)
  418. [Wittmann03]
    R. Wittmann, J. Hartung, H.-J. Wassener, G. Tränkle, and M. Schröter, Hot topic session: RF design technology for highly integrated communication systems, in Proceedings of Design, Automation and Test in Europe Conference, Munich, Germany, 2003, pp. 842–847Google Scholar
  419. [Wojituk05]
    J. Wojituk, Analysis of frequency conversion for M-QAM and M-PSK modems, Dissertation, Chalmers Univ. of Tech., June 2005Google Scholar
  420. [Wouters02b]
    M. Wouters, G. Vanwijnsberghe, P. Van Wesemael, T. Huybrechts, and S. Thoen, Real-time implementation on FPGA of an OFDM based wireless LAN modem extended with adaptive loading, in Proceedings of European Solid-State Circuits Conference, Firenze, Italy, September 2002, pp. 531–534Google Scholar
  421. [Yang00]
    B. Yang, K. Letaief, R. Cheng, and C. Zhigang, Timing recovery for OFDM transmission, IEEE J. Sel. Areas in Commun., 18(11):2278– 2291, 2000Google Scholar
  422. [Yee01]
    D. G. W. Yee, A design methodology for highly-integrated low-power receivers for wireless communications, Ph.D. Dissertation, University of California at Berkeley, USA, Spring 2001Google Scholar
  423. [Yeh01]
    W. C. Yeh, Arithmetic module design and its application to FFT, Ph.D. Dissertation, National Chiao-Tung University, China, October 2001Google Scholar
  424. [Yun99]
    K. Y. Yun and A. E. Dooply, Pausible clocking-based heterogeneous systems, IEEE Trans. VLSI Syst., 7(4):482–488, 1999Google Scholar
  425. [Zander00]
    J. Zander, Trends in resource management future wireless networks, in Proceedings of IEEE Wireless Communications and Networking Conference, Chicago, USA, September 2000, pp. 159–163Google Scholar
  426. [Zargari02]
    M. Zargari et al., A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems, IEEE J. Solid-State Circuits, 37(12):1688– 1694, 2002Google Scholar
  427. [Zhang01]
    N. Zhang, Algorithm/architecture co-design for wireless communications systems, Ph.D. Dissertation, University of California at Berkeley, USA, Fall 2001Google Scholar
  428. [Zhao03]
    J. Zhao, Z. Guo, and W. Zhu, Power efficiency in IEEE 802.11a WLAN with cross-layer adaptation, in Proceedings of IEEE International Conference on Communications, May 2003, pp. 2030– 2034Google Scholar
  429. [Zhou02]
    S. Zhou, G. B. Giannakis, and C. Le Martret, Chip-interleaved block-spread code division multiple access, IEEE Trans. Commun., 50(2):235–248, 2002Google Scholar
  430. [Zimmerman67]
    M. S. Zimmerman and A. L. Kirsch, The AN/GSC-10 (KATHRYN) variable rate data modem for HF radio, IEEE Trans. Commun. Technol., 15(2):197–204, 1967Google Scholar
  431. [Zimmermann99]
    T. G. Zimmermann, Wireless networked digital devices: A new paradigm for computing and communication, IBM Syst. J., 38:566–574, 1999Google Scholar
  432. [Zuberek92]
    W. M. Zuberek, Flexible circuit simulation with mixed-domain and mixed-mode applications, in Proceedings of IEEE International Symposium on Circuits and Systems, San Diego, USA, May 1992, pp. 81–84Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations