Skip to main content

Specification for a Wireless LAN Terminal

  • Chapter
Wireless Transceiver Systems Design
  • 1094 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    41 Originally in Kritik der reinen Vernunft and often translated as “Experience without theory is blind, but theory without experience is mere intellectual play,” this translation does not capture the whole original citation. Kant wrote his first works in Latin but moved later to German, contributing significantly to the recognition of German as a language of science. Basically, he links practice to theory but also the importance of terminology and the relevance of practical context to methodology and thinking.

  2. 2.

    42According to IDC, September 5, 2003.

  3. 3.

    43 IBM Zürich Research Labs, 1979.

  4. 4.

    44 Acquired in 1991 by AT&T.

  5. 5.

    45 With an incredible amount of luck, I succeeded in getting early samples of this chipset already in 1996 before the market introduction in Europe [Eberle96].

  6. 6.

    46 CNET News.com, “Cisco ‘winds down’ wireless chipsets,” February 2, 2004.

  7. 7.

    47 For example, 802.11e for QoS, 802.11h for power control, 802.11i for security, and 802.11j for interoperability.

  8. 8.

    48 Second-generation IWLAN, SIEMENS Automation and Drives, press release, November 2003.

  9. 9.

    49 METRO Group, press release, January 2004.

  10. 10.

    50 Intel Corp., “Microsoft Corporation: 35,000 employees go wireless with WLAN,” January 2003, http://www.intel.com/business/casestudies/microsoft.pdf.

  11. 11.

    51 According to Dataquest, 2003.

  12. 12.

    52 T-Mobile, “T-Mobile constructs Austria's biggest WLAN network,” press release, February 18, 2004.

  13. 13.

    53 Lower layers are identical.

  14. 14.

    54 Quoting Rose: “Sell the application, not the network.” [Rose01]

  15. 15.

    55 Our terms QoE and QoS match, respectively, the terms perceived QoS and intrinsic QoS as defined by ITU/ETSI [Gozdecki03]. Note, however, that perceived QoS in ITU/ETSI encompasses required and perceived QoS by the user as well as offered and achieved QoS by the provider. We always use the user perspective.

  16. 16.

    56 Note that, in the context of WLAN, the cell-size taxonomy is shifted toward smaller areas. While picocells in cellular systems may cover an entire building, picocells in WLAN target a single room [Prasad99, Skellern97].

  17. 17.

    57 Also called basestations.

  18. 18.

    58 Goodput is the error-free throughput at the interface to the application layer (L7).

  19. 19.

    59 The small-office home-office case aggregates office tasks with multimedia consumer services.

  20. 20.

    60 This short-distance high-speed link could be taken up by devices according to IEEE 802.15.3a.

  21. 21.

    61 The importance of both peak power and average energy consumption is detailed in Chap. 6.

  22. 22.

    62 For classical direct spread-spectrum techniques, higher throughput results in higher signal bandwidth. It was clear that available spectrum is limited (either because it is licensed for fairly high costs such as in the GSM or UMTS cases, or it can become crowded in the case of unlicensed spectrum such as the 2.4-GHz bands). Hence, a solution was required that both offers a better spectral efficiency and allows an intrinsic scalability from low to high bit rates and to varying channel conditions. OFDM meets these requirements.

  23. 23.

    63 OFDM is typically seen as a candidate for medium to high bit rates for two reasons. First, the number of subcarriers increases with the frequency selectivity of the channel which is typically not a problem for low-data rates in the range of kbit s−1. Second, OFDM offers advanced bandwidth allocation schemes, e.g., for multiuser applications which are often not needed for low bit-rate transmission.

  24. 24.

    64 The excess delay is defined relative to the time of arrival of the first propagation path.

  25. 25.

    65 Equalization is here reduced to a single-tap gain and phase adjustment.

  26. 26.

    66 The baud rate is defined as the number of signal transitions per second. The actual bit rate can be derived from the baud rate when the amount of signal constellations is known, i.e., the modulation scheme has been defined.

  27. 27.

    67 20 MHz is the bandwidth of IEEE 802.11a/g and HiperLAN/2 WLAN.

  28. 28.

    68 Note that, assuming the classical hexagonal cellular layout, no solution exists for the three channels in the 2.4-GHz band, while the eight (12) channels in the 5-GHz band can be effectively used to implement a proper cellular system.

  29. 29.

    69 The Collins TE-206 KINEPLEX system from 1959 used four equally spaced tones between 935 and 2,255 Hz. This spectrum was upconverted to a 21-kHz carrier. Two channels were multiplexed on a single tone. The equipment was already transistorized but still it had cabinet size and required a 100-W power supply.

  30. 30.

    70 The classical papers mostly used the term tone. In this dissertation, we will use the modern term subcarrier instead of tone.

  31. 31.

    71 The paper was declassified later and reprinted in 1981.

  32. 32.

    72 Submitted 1966, published 1969. The corresponding patent was granted in 1970. Note that it also included the optimum design of the transmit filters for a given amplitude transfer function ǀh(f)ǀ of the channel.

  33. 33.

    73 In literature, also block length or frame length is used.

  34. 34.

    74 Note this particular view of the data input to the Fourier transform as a time multiplex of different sources. In OFDM today, the data stream of a single source is mapped to subcarriers in a particular way.

  35. 35.

    75 Other common names are cyclic extension, guard interval, or guard time.

  36. 36.

    76 Also: circular convolution.

  37. 37.

    77 This is the title of a frequently cited article by [Bingham90].

  38. 38.

    78 In the xDSL community, the term discrete multitone (DMT) is preferred over OFDM.

  39. 39.

    79 Preliminary specifications include a 500-MHz band, 128 QPSK-modulated subcarriers, 4–10 m ranges, and data rates beyond 100 Mbps at very low-power spectral density.

  40. 40.

    80 The transmitter expects its input as constellation points in the complex phase domain.

  41. 41.

    81 This results in an optimization problem, which is dealt with in adaptive loading [Kalet89, Thoen02].

  42. 42.

    82 Recently, frequency-domain equalization has become popular in single-carrier system, too [Czylwik97].

  43. 43.

    83 With integration, we mean a system-in-a-package (SiP) approach.

  44. 44.

    84 For completeness, IEEE 802.11 provides also more efficient protocol flavors such as an RTS/CTS scheme.

  45. 45.

    85 A 4,095 byte payload at the lowest possible modulation/coding rate (BPSK with half-rate coding).

  46. 46.

    86 This is fairly realistic even in industrial contexts when referring to early R&D phases. In these phases, functionality or performance is dominating metrics.

  47. 47.

    87 Note that neither IEEE 802.11a nor ETSI HiperLAN/2 were finalized when our first IC design started. Note, however, that we designed our second IC toward the IEEE 802.11a standard.

Bibliography

  1. A. A. Abidi, Direct-conversion radio transceivers for digital communications, IEEE J. Solid-State Circuits, 30(12):1399–1410, 1997

    Google Scholar 

  2. A. A. Abidi, G. J. Pottie, and W. J. Kaiser, Power-conscious design of wireless circuits and systems, Proc. IEEE, 88(10):1528–1545, 2000

    Google Scholar 

  3. ITU-T G.992, Asymmetrical Digital Subscriber Line (ADSL) transceivers, July 1999

    Google Scholar 

  4. The American Heritage Dictionary of the English Language, 4th edition. Boston: Houghton Mifflin, 2000 (http://www.bartleby.com)

  5. G. R. Aiello and G. D. Rogerson, Ultra-wideband wireless systems, IEEE Microwave Mag., 4(2):36–47, 2003

    Google Scholar 

  6. A. N. Akansu, P. Duhamel, and X. Lin, Orthogonal transmultiplexers in communication: A review, IEEE Trans. Signal Process., 46(4):979– 995, 1998

    Google Scholar 

  7. M. Alard and R. Lassalle, Principles of modulation and channel coding for digital broadcasting for mobile receivers, EBU Technical Review, no. 224, pp. 168–190, August 1987

    Google Scholar 

  8. M. F. C. Allais, A la recherché d'une discipline économique: L'économie pure. Paris: Ateliers Industria, 1943

    Google Scholar 

  9. P. E. Allen, B. Chan, and W. M. Zuberek, Comparison of mixed analog—digital simulators, in Proceedings of IEEE International Symposium on Circuits and Systems, New Orleans, USA, May 1990, pp. 101–104

    Google Scholar 

  10. S. Armour, A. Nix, and D. Bull, Complexity evaluation for the implementation of a pre-FFT equalizer in an OFDM receiver, IEEE Trans. Consum. Electron., 46(3):428–437, 2000

    Google Scholar 

  11. P. M. Asbeck, L. E. Larson, and I. G. Galton, Synergistic design of DSP and power amplifiers for wireless communications, IEEE Trans. Microwave Theory Techn., 49(11):2163–2169, 2001

    Google Scholar 

  12. V. Aue, J. Kneip, M. Weiss, M. Bolle, and G. Fettweis, MATLAB based codesign framework for wireless broadband communication DSPs, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, USA, May 2001, pp. 1253–1256

    Google Scholar 

  13. B. Baas, A low-power, high-performance, 1024-point FFT processor, IEEE J. Solid-State Circuits, 34(3):380–387, 1999

    Google Scholar 

  14. B. Baas, An approach to low-power, high-performance, Fast Fourier Transform processor design, Ph.D. Dissertation, Stanford University, Palo Alto, USA, February 1999

    Google Scholar 

  15. J. Bae, V. K. Prasanna, and H. Park, Synthesis of a class of data format converters with specified delays, in Proceedings of International Conference on Application Specific Array Processors, San Francisco, USA, August 1994, pp. 283–294

    Google Scholar 

  16. J. Bae and V. K. Prasanna, Synthesis of area efficient and high-throughput rate data format converters, IEEE Trans. VLSI Syst., 6(4):697–706, 1998

    Google Scholar 

  17. A. R. S. Bahai and B. R. Saltzberg, Multi-Carrier Digital Communications — Theory and Applications of OFDM. New York: Kluwer, 1999

    Google Scholar 

  18. P. G. M. Baltus, Efficient RF Design Methods, presented at IMEC Design Technology Seminar, 14 March 2003

    Google Scholar 

  19. L. Bannon, R. Keil-Slawik, and I. Wagner, eds., A Multidisciplinary Foundation for System Design and Evaluation. Germany: Schloss Dagstuhl, 1994

    Google Scholar 

  20. T. E. Bell and T. A. Thayer, Software requirements: Are they really a problem? in Proceedings of International Conference on Software Engineering, San Francisco, USA, 1976, pp. 61–68

    Google Scholar 

  21. P. A. Bello, Selective fading limitations of the Kathryn modem and some system design considerations, IEEE Trans. Commun. Technol., 13(3):320–333, 1965

    Google Scholar 

  22. L. Benini and G. De Micheli, Automatic synthesis of low-power gated-clock finite-state machines, IEEE Trans. CAD, 15(6):630–643, 1996

    Google Scholar 

  23. L. Benini and G. De Micheli, System-level power optimization: Techniques and tools, in Proceedings of International Symposium on Low Power Electronics and Design, San Diego, USA, August 1999, pp. 288–293

    Google Scholar 

  24. G. Bergland, Fast Fourier transform hardware implementations — An overview, IEEE Trans. Audio Electroacoust., 17(2):104–108, 1969

    Google Scholar 

  25. E. Bertran and J. M. Palacin, Control theory applied to the design of AGC circuits, in Proceedings of Mediterranean Electrotechnical Conference, Ljubljana, Slovenia, May 1991, pp. 60–70

    Google Scholar 

  26. M. Bickerstaff, T. Arivoli, P. J. Ryan, N. Weste, and D. Skellern, A low-power 50-MHz FFT processor with cyclic extension and shaping filter, in Proceedings of Asia and South Pacific Design Automation Conference, Yokohama, Japan, February 1998, pp. 335–336

    Google Scholar 

  27. E. Bidet, D. Castelain, C. Joanblancq, and P. Senn, A fast single-chip implementation of 8192 complex-point FFT, IEEE J. Solid-State Circuits, 30(3):300–305, 1995

    Google Scholar 

  28. J. Bingham, Multicarrier modulation for data transmission: An idea whose time has come, IEEE Commun. Mag., 28(5):5–14, 1990

    MathSciNet  Google Scholar 

  29. C. Bisdikian, An overview of the Bluetooth wireless technology, IEEE Commun. Mag., 39(12):86–94, 2001

    Google Scholar 

  30. K. L. Blackard, T. S. Rappaport, and C. W. Bostian, Measurements and models of radio frequency impulsive noise for indoor wireless communications, IEEE J. Sel. Areas Commun., 11(7):991–1001, 1993

    Google Scholar 

  31. M. Bolle, D. Clawin, K. Gieske, F. Hofmann, T. Mlasko, M. Ruf, and G. Spreitz, The receiver engine chip-set for digital audio broadcasting, in Proceedings of URSI International Symposium on Signals, Systems, and Electronics, Pisa, Italy, September 1998, pp. 338–342

    Google Scholar 

  32. I. Bolsens, H. De Man, B. Lin, K. Van Rompaey, S. Vercauteren, and D. Verkest, Hardware/software co-design of digital telecommunication systems, Proc. IEEE, 85(3):391–418, 1997

    Google Scholar 

  33. J. Borel, Design Automation in MEDEA: Present and Future, IEEE Micro, 19(5):71–79, 1999

    Google Scholar 

  34. B. Bougard, G. Lenoir, W. Eberle, F. Catthoor, and W. Dehaene, A new approach to dynamically trade off performance and energy consumption in wireless communication systems, in Proceedings of IEEE Symposium on Signal Processing System, Seoul, South Korea, August 2003, pp. 298–303

    Google Scholar 

  35. B. Bougard et al., A scalable 8.7-nJ/bit 75.6-Mbit/s parallel concatenated convolutional (turbo-) CODEC, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2003, pp. 152–153

    Google Scholar 

  36. B. Bougard, S. Pollin, G. Lenoir, W. Eberle, L. Van der Perre, F. Catthoor, and W. Dehaene, Modeling of energy-scalable wireless local area network transceivers, in Proceedings of IEEE Workshop on Signal Processing Advances in Wireless Communication, July 2004

    Google Scholar 

  37. I. Bouras et al., A digitally calibrated 5.15–5.825 GHz transceiver for 802.11a wireless LANs in 0.18 μm CMOS, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2003, pp. 352–353

    Google Scholar 

  38. J. Brakensiek, B. Oelkrug, M. Bücker, D. Uffmann, A. Dröge, M. Darianian, and M. Otte, Software radio approach for re-configurable multi-standard radios, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, 2002, pp. 110–114

    Google Scholar 

  39. R. Brederlow, W. Weber, J. Sauerer, S. Donnay, P. Wambacq, and M. Vertregt, A mixed-signal design roadmap, IEEE Des. Test Comput., 18:34–46, 2001

    Google Scholar 

  40. E. Brockmeyer, C. Ghez, J. D'Eer, F. Catthoor, and H. De Man, Parametrizable behavioral IP module for a data-localized low-power FFT, in Proceedings of IEEE Workshop on Signal Processing Systems, October 1999, pp. 635–644

    Google Scholar 

  41. R. E. Bryant et al., Limitations and challenges of computer-aided design technology for CMOS VLSI, Proc. IEEE, 89(3):341–365, 2001

    Google Scholar 

  42. M. Büchi and W. Weck, A plea for grey-box components, TUCS Technical Report No. 122, Turku Centre for Computer Science, August 1997

    Google Scholar 

  43. J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, Ptolemy: A framework for simulating and prototyping heterogeneous systems, Int. J. Comput. Simul., 4:155–182, 1994

    Google Scholar 

  44. P. Busson, P.-O. Jouffre, P. Dautriche, F. Paillardet, and I. Telliez, A complete single-chip front-end for digital satellite broadcasting, in Proceedings of International Conference on Consumer Electronics, Los Angeles, USA, June 2001, pp. 112–113

    Google Scholar 

  45. P. Busson et al., Satellite tuner single chip simulation with ADS (http://eesof.tm.agilent.com/pdf/st.pdf)

  46. E. Callaway et al., Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks, IEEE Commun. Mag., 40(8):70–76, 2002

    Google Scholar 

  47. F. Catthoor et al., Architectural strategies for an application-specific synchronous multiprocessor environment, IEEE Trans. Acoust. Speech Signal Process., 36(2):265–284, 1988

    Google Scholar 

  48. F. Catthoor, D. Lanneer, and H. De Man, Efficient microcoded processor design for fixed rate DFT and FFT, J. VLSI Signal Process., 1:287–306, 1990

    Google Scholar 

  49. F. Catthoor, S. Wuytack, E. De Greef, F. Franssen, L. Nachtergaele, and H. De Man, System-level transformations for low data transfer and storage, in Low Power CMOS Design, A. Chandrakasan and R. Brodersen, Eds. New York: IEEE, 1998, pp. 609–618

    Google Scholar 

  50. F. Catthoor, D. Verkest, and E. Brockmeyer, Proposal for unified system design meta flow in task-level and instruction-level design technology research for multi-media applications, in Proceedings of International Symposium on System Synthesis, Hsinchu, Taiwan, December 1998, pp. 89–95

    Google Scholar 

  51. E. Çetin, R. C. S. Morling, and I. Kale, An integrated 256-point complex FFT processor for real-time spectrum analysis and measurement, in Proceedings of Instrumentation and Measurement Technology Conference, Ottawa, Canada, May 1997, pp. 96–101

    Google Scholar 

  52. R. W. Chang, Synthesis of band limited orthogonal signals for multichannel data transmission, Bell Syst. Techn. J., 45:1775–1796, 1969

    Google Scholar 

  53. R. W. Chang, Orthogonal frequency-division multiplexing, US Patent 3,448,455, filed November 1966, issued January 1970

    Google Scholar 

  54. J.-M. Chang and M. Pedram, Energy minimization using multiple supply voltages, in Proceedings of International Symposium on Low Power Electronics and Design, Monterey, USA, August 1996, pp. 157– 162

    Google Scholar 

  55. H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd, Surviving the SOC Revolution: A Guide to Platform-Based Design. Boston: Kluwer, 1999

    Google Scholar 

  56. K.-C. Chen, Medium access control of wireless LANs for mobile computing, IEEE Network, 8(5):50–63, 1994

    Google Scholar 

  57. J. Chen, D. Feng, J. Philips, and K. Kundert, Simulation and modeling of intermodulation distortion in communication circuits, in Proceedings of IEEE Custom Integrated Circuits Conference, San Diego, USA, May, 1999, pp. 5–8

    Google Scholar 

  58. J. C. Chen and J. M. Gilbert, Measured performance of 5-GHz 802.11a Wireless LAN systems, Technical Report, Atheros Communications, 27 August 2001

    Google Scholar 

  59. S. T. S. Chia, Network architectures for supporting mobility in a Third Generation mobile system, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, September 1991, pp. 236–240

    Google Scholar 

  60. J. S. Chow, J. C. Tu, and J. M. Cioffi, Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services, IEEE J. Sel. Areas Commun., 9(6):909–919, 1991

    Google Scholar 

  61. J. S. Chow, J. C. Tu, and J. M. Cioffi, A discrete multitone transceiver system for HDSL applications, IEEE J. Sel. Areas Commun., 9(6):895– 908, 1991

    Google Scholar 

  62. S. T. Chung and A. J. Goldsmith, Degrees of freedom in adaptive modulation: A unified view, IEEE Trans. Commun., 49(9):1561–1571, 2001

    MATH  Google Scholar 

  63. C. Ciborra, From Thinking to Tinkering. New York: Wiley, 2004

    Google Scholar 

  64. L. J. Cimini, Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing, IEEE Trans. Commun., 33:665–675, 1985

    Google Scholar 

  65. T. A. C. M. Claasen, High speed: Not the only way to exploit the intrinsic computational power of silicon, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 1999, pp. 22–25

    Google Scholar 

  66. A. Claessen, L. Monteban, and H. Moelard, The AT&T GIS WaveLAN air interface and protocol stack, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, September 1994, pp. 1442–1446

    Google Scholar 

  67. D. Clawin et al., Architecture and performance of an alternative DAB receiver chip set, in Proceedings of European Microwave Conference, October 1998, pp. 645–650

    Google Scholar 

  68. B. Colwell, Design fragility, IEEE Comput. Mag., 37(1):13–16, 2004

    Google Scholar 

  69. B. Côme, R. Ness, S. Donnay, L. Van der Perre, W. Eberle, P. Wambacq, M. Engels, and I. Bolsens, Impact of front-end non-idealities on bit error rate performances of WLAN—OFDM transceivers, in Proceedings of IEEE Radio and Wireless Conference, Denver, USA, September 2000, pp. 91–94

    Google Scholar 

  70. B. Côme, D. Hauspie, G. Albasini, S. Brebels, W. De Raedt, W. Diels, W. Eberle, H. Minami, J. Ryckaert, J. Tubbax, and S. Donnay, Single-package direct-conversion receiver for 802.11a wireless LAN enhanced with fast converging digital compensation techniques, in IEEE MTT-S International Microwave Symposium Digest, Fort Worth, USA, 6–11 June 2004

    Google Scholar 

  71. J. W. Cooley and J. W. Tukey, An algorithm for machine calculation of complex Fourier series, Math. Comput., 19:297–301, 1965

    MathSciNet  MATH  Google Scholar 

  72. R. Coombs and R. Steele, Introducing microcells into macrocellular networks: A case study, IEEE Trans. Commun., 47(4):568–576, 1999

    Google Scholar 

  73. Collins Radio Co., Collins kineplex systems, in Collins Radio Company 1959 General Catalog, 1959, pp. 67–70

    Google Scholar 

  74. J. Crols, S. Donnay, M. Steyaert, and G. Gielen, A high-level design and optimization tool for analog RF receiver front-ends, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), November 1995, pp. 550–553

    Google Scholar 

  75. J. Crols and M. Steyaert, Low-IF topologies for high-performance analog front-ends of fully integrated receivers, IEEE Trans. Circuits Syst. II, 45(3):269–282, 1998

    Google Scholar 

  76. B. P. Crow, I. Widjaja, L. G. Kim, and P. T. Sakai, IEEE 802.11 wireless local area networks, IEEE Commun. Mag., 35(9):116–126, 1997

    Google Scholar 

  77. A. Czylwik, Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization, in Proceedings of IEEE Vehicular Technology Conference, Phoenix, USA, 1997, pp. 865–869

    Google Scholar 

  78. L. d'Hainaut, Interdisciplinarity in general education, in International Symposium on Interdisciplinarity in General Education, UNESCO, May 1986 (http://www.unesco.org/education/pdf/31_14.pdf)

  79. ETSI ETS 300 401, Digital Audio Broadcasting (DAB); DAB to Mobile, Portable and Fixed Receivers, February 1995 (created: May 1992)

    Google Scholar 

  80. F. Daffara and O. Adami, A novel carrier recovery technique for orthogonal multicarrier systems, Eur. Trans. Telecommun., 7:323–334, 1996

    Google Scholar 

  81. W.-J. Dai, D. Huang, C.-C. Chang, and M. Courtoy, Silicon virtual prototyping: The new cockpit for nanometer chip design, in Proceedings of Asia and South Pacific Design Automation Conference, January 2003, pp. 635–639

    Google Scholar 

  82. A. Davis, A taxonomy for early stages of the software development life cycle, J. Syst. Software, 8(4):297–311, 1988

    Google Scholar 

  83. W. R. Davis et al., A design environment for high-throughput low-power dedicated signal processing systems, IEEE J. Solid-State Circuits, 37(3):420–431, 2002

    Google Scholar 

  84. B. Debaillie, B. Côme, W. Eberle, S. Donnay, and M. Engels, Impact of front-end filters on bit error rate performances in WLAN—OFDM transceivers, in Proceedings of IEEE Radio and Wireless Conference, Boston, USA, August 2001, pp. 193–196

    Google Scholar 

  85. B. Debaillie, H. Minami, B. Côme, W. Eberle, and S. Donnay, Filter design methodology controlling the impact on bit error rate performances in WLAN—OFDM transceivers, in Proceedings of International Workshop on Multi-Carrier Spread Spectrum, Oberpfaffenhofen, Germany, September 2001

    Google Scholar 

  86. B. Debaillie, H. Minami, B. Côme, W. Eberle, and S. Donnay, System-level filter design methodology for WLAN—OFDM transceivers, Microwave J., 45(5):268–279, 2002

    Google Scholar 

  87. L. De Locht et al., Identification of contributions to nonlinear circuit behavior caused by multitone excitation, in Proceedings of ARFTG Conference, Florida, USA, November 2005, pp. 75–84

    Google Scholar 

  88. H. De Man, System design challenges in the post-PC era, in Proceedings of ACM/IEEE Design Automation Conference, Los Angeles, USA, June 2000

    Google Scholar 

  89. L. Deneire, W. Eberle, M. Engels, B. Gyselinckx, S. Thoen, P. Vandenameele, and L. Van der Perre, Broadband wireless OFDM communication beyond standards, in Proceedings of International Symposium on Mobile Multimedia Systems and Applications, Delft, The Netherlands, December 2000, pp. 71–78

    Google Scholar 

  90. L. Deneire, W. Eberle, M. Engels, B. Gyselinckx, S. Thoen, P. Vandenameele, and L. Van der Perre, Broadband wireless OFDM communication, Revue HF, 4:30–38, 2000

    Google Scholar 

  91. L. Deneire, B. Gyselinckx, and M. Engels, Training sequence vs. cyclic prefix — A new look on single carrier communication, in Proceedings of IEEE Global Telecommunications Conference, San Francisco, USA, November 2000, pp. 1056–1060

    Google Scholar 

  92. L. Deneire, P. Vandenameele, L. Van der Perre, B. Gyselinckx, and M. Engels, A low complexity ML channel estimator for OFDM, IEEE Trans. Commun., 51(2):135–140, 2003

    Google Scholar 

  93. A. M. Despain, Very Fast Fourier Transform algorithms hardware for implementation, IEEE Trans. Comput., 28(5):333–341, 1979

    MathSciNet  MATH  Google Scholar 

  94. N. Diesing, Why has industry been slow to embrace mixed analog—digital simulation tools? in Proceedings of IEEE International Symposium on Circuits and Systems, London, UK, May 1994, pp. 269– 274

    Google Scholar 

  95. P. Dobrovolný, P. Wambacq, G. Vandersteen, D. Hauspie, S. Donnay, M. Engels, and I. Bolsens, The effective high-level modeling of a 5-GHz RF variable gain amplifier, in Proceedings of Workshop on Nonlinear Dynamics of Electronic Systems, Delft, The Netherlands, June 2001

    Google Scholar 

  96. M. L. Doelz, F. T. Heald, and D. L. Martin, Binary data transmission techniques for linear systems, Proc. IRE, 45:656–661, 1957

    Google Scholar 

  97. S. Donnay, K. Swings, G. Gielen, W. Sansen, W. Kruiskamp, and D. Leenaerts, A methodology for analog design automation in mixed-signal ASICs, in Proceedings of European Design and Test Conference, February 1994, pp. 530–534

    Google Scholar 

  98. S. Donnay et al., Chip-package co-design of a low-power 5-GHz RF front-end, Proc. IEEE, 88(10):1583–1597, 2000

    Google Scholar 

  99. A. Doufexi, S. Armour, M. Butler, A. Nix, D. Bull, and J. McGeehan, A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards, IEEE Commun. Mag., 40(5):172–180, 2002

    Google Scholar 

  100. P. Duhamel and M. Vetterli, Fast Fourier Transforms: A tutorial review and a state of the art, IEEE Signal Process. Mag., 19:259–299, 1990

    MathSciNet  MATH  Google Scholar 

  101. A. Dutta-Roy, Networks for homes, IEEE Spectrum, 36(12):26–33, 1999

    Google Scholar 

  102. ETSI EN 302 304, Digital Video Broadcasting (DVB); Transmission System for Handheld Terminals (DVB-H), V1.1.1, November 2004

    Google Scholar 

  103. ETSI EN 300 744, Digital Video Broadcasting (DVB); Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television, V1.4.1, January 2001 (created: February 2000)

    Google Scholar 

  104. W. Eberle, Wireless LAN activities including ASIC architecture and design methodology, presented at Workshop of the Innovationskolleg Kommunikationssysteme, Dresden, Germany, December 1997

    Google Scholar 

  105. W. Eberle, L. Van der Perre, B. Gyselinckx, M. Engels, and I. Bolsens, Design aspects of an OFDM-based wireless LAN with regard to ASIC integration, in Proceedings of International OFDM Workshop, Braunschweig, Germany, September 1997

    Google Scholar 

  106. W. Eberle, M. Badaroglu, V. Derudder, S. Thoen, P. Vandenameele, L. Van der Perre, M. Vergara, B. Gyselinckx, M. Engels, and I. Bolsens, Flexible OFDM transceiver for high-speed WLAN, in Proceedings of IEEE Vehicular Technology Conference, Amsterdam, The Netherlands, September 1999, pp. 2677–2681

    Google Scholar 

  107. W. Eberle, L. Van der Perre, B. Gyselinckx, M. Engels, and S. Thoen, European Patent EP1030489 Multicarrier transceiver based on European Patent EP1083721, filed 1999 and granted on 6 July 2004

    Google Scholar 

  108. W. Eberle, M. Badaroglu, V. Derudder, S. Thoen, P. Vandenameele, L. Van der Perre, M. Vergara, B. Gyselinckx, M. Engels, and I. Bolsens, A digital 80 Mb/s OFDM transceiver IC for wireless LAN in the 5-GHz band, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2000, pp. 74–75 and 448

    Google Scholar 

  109. W. Eberle, M. Badaroglu, V. Derudder, L. Van der Perre, M. Vergara, B. Gyselinckx, M. Engels, I. Bolsens, and H. De Man, A flexible OFDM transceiver ASIC for high-speed wireless local networks, in Proceedings of International Conference on Telecommunications, Acapulco, Mexico, May 2000, pp. 1122–1128

    Google Scholar 

  110. W. Eberle, L. Deneire, H. De Man, B. Gyselinckx, and M. Engels, Automatic gain control for OFDM-based wireless burst receivers, in Proceedings of International OFDM Workshop, Hamburg, Germany, September 2000

    Google Scholar 

  111. W. Eberle, V. Derudder, L. Van der Perre, G. Vanwijnsberghe, M. Vergara, L. Deneire, B. Gyselinckx, M. Engels, I. Bolsens, and H. De Man, A digital 72 Mb/s 64-QAM OFDM transceiver for 5-GHz wireless LAN in 0.18 μm CMOS, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2001, pp. 336–337 and 462

    Google Scholar 

  112. W. Eberle, V. Derudder, G. Vanwijnsberghe, M. Vergara, L. Deneire, L. Van der Perre, M. Engels, I. Bolsens, and H. De Man, 80 Mb/s QPSK and 72 Mb/s 64-QAM flexible and scalable digital OFDM transceiver ASICs for wireless local area networks in the 5-GHz band, IEEE J. Solid-State Circuits, 36(11):1829–1838, 2001

    Google Scholar 

  113. W. Eberle, J. Tubbax, B. Côme, S. Donnay, G. Gielen, and H. De Man, OFDM—WLAN receiver performance improvement using digital compensation techniques, in Proceedings of IEEE Radio and Wireless Conference, Boston, USA, August 2002, pp. 111–114

    Google Scholar 

  114. W. Eberle, B. Côme, S. Donnay, G. Gielen, and H. De Man, Mixed-signal compensation techniques for low-cost 802.11a receiver front-ends, in Proceedings of Communications Design Conference, San Jose, USA, September 2002

    Google Scholar 

  115. W. Eberle, Putting it all together, in Wireless OFDM Systems: How to Make Them Work? M. Engels, Ed. Boston: Kluwer, 2002, pp. 151–189

    Google Scholar 

  116. W. Eberle, European Patent EP03447080.7 Device with front-end reconfiguration, based on US Patent US60/370,642 A Wireless Communication Device, filed 2002

    Google Scholar 

  117. W. Eberle, Flexible devices without shipping the engineer along with it: Panel on ‘WLAN, WPAN and IP: The PACWOMAN approach’, presented at International Symposium on Wireless Personal Multimedia Communications, Honolulu, USA, 27–30 October 2002

    Google Scholar 

  118. W. Eberle, G. Vandersteen, P. Wambacq, S. Donnay, G. Gielen, and H. De Man, Behavioral modeling and simulation of a mixed analog/ digital automatic gain control loop in a 5-GHz WLAN receiver, in Proceedings of Design, Automation and Test in Europe Conference, München, Germany, March 2003, pp. 642–647

    Google Scholar 

  119. J.-P. Ebert and A. Wolisz, Combined tuning of RF power and medium access control for WLANs, in Proceedings of IEEE International Workshop on Mobile Multimedia Communications, November 1999, pp. 74–82

    Google Scholar 

  120. D. Edenfeld, A. B. Kahng, M. Rodgers, and Y. Zorian, 2003 technology roadmap for semiconductors, IEEE Comput. Mag., 37(1):47–56, 2004

    Google Scholar 

  121. O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson, and P. O. Börjesson, OFDM channel estimation by singular value decomposition, IEEE Trans. Commun., 46(7):931–939, 1998

    Google Scholar 

  122. C. Eklund, R. B. Marks, K. L. Stanwood, and S. Wang, IEEE Standard 802.16: A technical overview of the WirelessMAN air interface for broadband wireless access, IEEE Commun. Mag., 40(6):98–107, 2002

    Google Scholar 

  123. D. F. Elliott and K. R. Rao, Fast Transforms — Algorithms, Analyses, Applications. New York: Academic, 1982

    Google Scholar 

  124. H. O. Elwan, T. B. Tarim, and M. Ismail, A digitally controlled dB-linear CMOS AGC for low voltage mixed signal applications, in Proceedings of Midwest Symposium on Circuits and Systems, Notre Dame, USA, August 1998, pp. 423–425

    Google Scholar 

  125. M. Engels, W. Eberle, and B. Gyselinckx, Design of a 100-Mbps wireless local area network, in Proceedings of URSI International Symposium on Signals, Systems, and Electronics, Pisa, Italy, September/October 1998, pp. 253–256

    Google Scholar 

  126. C. Englund, Future directions of personal multimedia communication space: Multimedia over IP, Technical Report, MIT Internet & Telecoms Convergence Consortium, 15 August 1997

    Google Scholar 

  127. M. Favalli, L. Benini, and G. De Micheli, Design for testability of gated-clock FSMs, in Proceedings of European Design and Test Conference, Paris, France, March 1996, pp. 589–596

    Google Scholar 

  128. M. J. Ferguson, Communication at low data rates — Spectral analysis receivers, IEEE Trans. Commun. Technol., 16(5):657–668, 1968

    MathSciNet  Google Scholar 

  129. A. Ferrari and A. Sangiovanni-Vincentelli, System design: Traditional concepts and new paradigms, in International Conference on Computer Design, Austin, USA, pp. 2–12, October 1999

    Google Scholar 

  130. A. Fertner and C. Sölve, An adaptive gain control with a variable step size for use in high-speed data communication systems, IEEE Trans. Circuits Syst. II, 44(11):962–966, 1997

    Google Scholar 

  131. M. Flament, Broadband wireless OFDM systems, Ph.D. Dissertation, Chalmers University of Technology, Göteborg, Sweden, November 2002

    Google Scholar 

  132. F. Fluckiger, Understanding Networked Multimedia. Englewood Cliffs, NJ: Prentice-Hall, 1995

    Google Scholar 

  133. G. Fodor, A. Eriksson, and A. Tuoriniemi, Providing quality of service in always best connected networks, IEEE Commun. Mag., 40(7):154–163, 2003

    Google Scholar 

  134. A. Fort, J.-W. Weijers, V. Derudder, W. Eberle, and A. Bourdoux, A performance and complexity comparison of auto-correlation and cross-correlation for OFDM burst synchronization, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, April 2003, pp. 341–344

    Google Scholar 

  135. A. Fort and W. Eberle, Synchronization and AGC proposal for IEEE 802.11a burst OFDM systems, in Proceedings of IEEE Global Telecommunications Conference, San Francisco, USA, December 2003, pp. 1335–1338

    Google Scholar 

  136. T. Fujisawa et al., A single-chip 802.11a MAC/PHY with a 32-b RISC processor, IEEE J. Solid-State Circuits, 38(11):2001–2009, 2003

    Google Scholar 

  137. D. Gajski and R. H. Kuhn, New VLSI tools, IEEE Comput., 16(2):11–14, 1983

    Google Scholar 

  138. F. M. Gardner and J. D. Baker, Simulation Techniques: Models of Communication Signals and Processes. New York: Wiley, 1996

    Google Scholar 

  139. I. E. Getreu, Behavioral modeling of analog blocks using the Saber simulator, in Proceedings of Midwest Symposium on Circuits and Systems, August 1989, pp. 977–980

    Google Scholar 

  140. M. Ghosh, Analysis of the effect of impulsive noise on MC and SC QAM systems, IEEE Trans. Commun., 44(2):145–147, 1996

    Google Scholar 

  141. G. Gielen and R. Rutenbar, Computer-aided design of analog and mixed-signal integrated circuits, Proc. IEEE, 88(12):1825–1854, 2000

    Google Scholar 

  142. G. Gielen, Modeling and analysis techniques for system-level architectural design of telecom front-ends, IEEE Trans. Microwave Theory Techn., 50(1):360–368, 2002

    Google Scholar 

  143. T. Givargis, F. Vahid, and J. Henkel, System-level exploration for Pareto-optimal configurations in parameterized system-on-a-chip, IEEE Trans. VLSI Syst., 10(4):416–422, 2002

    Google Scholar 

  144. R. Goering, Show time for ESL design? EEdesign, 30 June 2003

    Google Scholar 

  145. M. I. Goffioul, P. Wambacq, G. Vandersteen, and S. Donnay, Analysis of nonlinearities in RF front-end architectures using a modified Volterra series approach, in Proceedings of Design, Automation and Test in Europe Conference, Paris, France, March 2002, pp. 352–356

    Google Scholar 

  146. B. Goldberg, Applications of statistical communications theory, in Proceedings of West Point Army Conference, 1962; reprinted in IEEE Commun. Mag., 26–33, 1981

    Google Scholar 

  147. R. Gordon, A silicon virtual prototype is key in achieving design closure, EE Times, 19 August 2002

    Google Scholar 

  148. J. Gozdecki, A. Jajszczyk, and R. Stankiewicz, Quality of service terminology in IP networks, IEEE Commun. Mag., 41(3):153–159, 2003

    Google Scholar 

  149. R. Gupta and S. Rawat, The next HDL: If C++ is the answer, what was the question? in Proceedings of ACM/IEEE Design Automation Conference, June 2001, pp. 71–72

    Google Scholar 

  150. J. A. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and B. Heile, IEEE 802.15.4: A developing standard for low-power low-cost wireless personal area networks, IEEE Network, 15(5):12–19, 2001

    Google Scholar 

  151. B. Gyselinckx, W. Eberle, M. Engels, C. Schurgers, S. Thoen, P. Vandenameele, and L. Van der Perre, A flexible architecture for future wireless local area networks, in Proceedings of International Conference on Telecommunications, Chalkidiki, Greece, June 1998, pp. 115–119

    Google Scholar 

  152. B. Gyselinckx, W. Eberle, M. Engels, and M. Vergara, A 256-point FFT/IFFT for a 100 Mbit/s orthogonal frequency division multiplex modem, in Proceedings of International Conference on VLSI Design, Goa, India, January 1999

    Google Scholar 

  153. ETSI ETS 300 652, HIPERLAN Type 1; Functional Specification, October 1996 (created: November 1991)

    Google Scholar 

  154. ETSI ETS 101 761-1, Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data Link Control (DLC) Layer; Part 1: Basic Data Transport Functions, April 2000 (created: May 1999)

    Google Scholar 

  155. ETSI ETS 101 475, Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Physical (PHY) Layer, April 2000 (created: December 1997)

    Google Scholar 

  156. A. Hajimiri and T. Lee, A general theory of phase noise in electrical oscillators, IEEE J. Solid-State Circuits, 33(2):179–194, 1998

    Google Scholar 

  157. R. Y. Halim, J. Harris, M. Chadwick, T. Quan, N. Diesing, and E. MacRobbie, Mixed analog—digital simulation: The tools are here…is anyone really using them? in Proceedings of IEEE International Symposium on Circuits and Systems, May/June 1994, pp. 269–274

    Google Scholar 

  158. D. L. Harame et al., Design automation methodology and rf/analog modeling for rf CMOS and SiGe BiCMOS technologies, IBM J. Res. Dev., 47(23):139–175, 2003

    Google Scholar 

  159. I. Haroun and F. Gouin, WLANs meet fiber optics — Evaluating 802.11a WLANs over fiber optics links, RF Des. Mag., 36–39, 2003

    Google Scholar 

  160. Harris Semiconductor Corp., 1996 Wireless Communications Design Seminar Handbook, March 1996

    Google Scholar 

  161. H. Hashemi, The indoor radio propagation channel, Proc. IEEE, 81(7):943–968, 1993

    Google Scholar 

  162. L. Hazy and M. El-Tanany, Synchronization of OFDM systems over frequency selective fading channels, in Proceedings of IEEE Vehicular Technology Conference, 1997, pp. 2094–2098

    Google Scholar 

  163. S. He and M. Torkelson, A new approach to pipeline FFT processor, in Proceedings of IEEE International Parallel Processing Symposium, Honolulu, USA, April 1996, pp. 766–770

    Google Scholar 

  164. S. He and M. Torkelson, Design and implementation of a 1024-point pipeline FFT processor, in Proceedings of Custom Integrated Circuits Conference, Santa Clara, USA, May 1998, pp. 131–134

    Google Scholar 

  165. M. T. Heideman, D. H. Johnson, and C. S. Burrus, Gauss and the history of the fast Fourier transform, IEEE Signal Proc. Mag., 1(4):14– 21, 1984

    Google Scholar 

  166. P. S. Henry and H. Luo, WiFi: What's next? IEEE Commun. Mag., 40(12):66–72, 2002

    Google Scholar 

  167. B. Hirosaki, An orthogonally multiplexed QAM system using the Discrete Fourier Transform, IEEE Trans. Commun., 29:982–989, 1981

    Google Scholar 

  168. W. Hollemans and A. Verschoor, Performance study of WaveLAN and Altair radio-LANs, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, September 1994, pp. 831–837

    Google Scholar 

  169. W. Honcharenko, J. P. Kruys, D. Y. Lee, and N. J. Shah, Broadband wireless access, IEEE Commun. Mag., 35(1):20–26, 1997

    Google Scholar 

  170. H. Honkasalo, K. Pehkonen, M. T. Niemi, and A. T. Leino, WCDMA and WLAN for 3G and beyond, IEEE Wireless Commun., 9(2):14–18, 2002

    Google Scholar 

  171. J. Huisken, F. van de Laar, M. Bekooij, G. Gielis, P. Gruijters, and F. Welten, A power-efficient single-chip OFDM demodulator and Channel decoder for multimedia broadcasting, IEEE J. Solid-State Circuits, 33(11):1793–1798, 1998

    Google Scholar 

  172. A. P. Hulbert, A general purpose digital demodulator for VSAT and mobile spread spectrum CDMA signal reception, in Proceedings of ESA Workshop on DSP Techniques Applied to Space Communications, Barcelona, Spain, September 1996, pp. 11.45–11.59

    Google Scholar 

  173. R. Huys, Optimalisatie van het acquisiteproces in laagvermogen draadloze communicatiesystemen, M.S. Thesis, Katholieke Universiteit Leuven, Belgium, May 2003

    Google Scholar 

  174. IEEE Std. 802.11a, Amendment 1 to 802.11: High-speed physical layer in the 5-GHz band, 1999

    Google Scholar 

  175. IEEE Std. 802.11b, Supplement to 802.11: Higher speed physical layer (PHY) extension in the 2.4-GHz band, 1999

    Google Scholar 

  176. IEEE Std. 802.11g, Supplement to 802.11: Further higher data rate extension in the 2.4-GHz band, June 2003

    Google Scholar 

  177. IEEE Std. 802.11n, Supplement to 802.11: Enhancements for higher throughput, draft proposal, January 2006

    Google Scholar 

  178. IEEE Std. 802.16-2004, Standard for local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, 2004

    Google Scholar 

  179. IEEE Std. 802.16E-2005, Standard for local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, January 2006

    Google Scholar 

  180. IEEE Std. 830, Recommended practice for software requirements specifications, June 1998

    Google Scholar 

  181. IEEE Std. 1233, Guide for developing system requirements specifications, 1998

    Google Scholar 

  182. N. Ikeda, The spectrum as commons, RIETI 167 Discussion Paper Series 02-E002, March 2002

    Google Scholar 

  183. M. F. Jacome and S. W. Director, A formal basis for design process planning and management, IEEE Trans. CAD, 15(10):1197–1211, 1996

    Google Scholar 

  184. W. C. Jakes, Microwave Mobile Communications. New York: IEEE, 1993

    Google Scholar 

  185. G. J. M. Janssen, P. A. Stigter, and R. Prasad, Wideband indoor channel measurements and BER analysis of frequency selective multipath channels at 2.4, 4.75, and 11.5 GHz, IEEE Trans. Commun., 44(10):1272–1288, 1996

    Google Scholar 

  186. M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems. New York: Plenum, 1992

    Google Scholar 

  187. Q.-W. Jia and G. Mathew, A novel AGC scheme for DFE read channels, IEEE Trans. Magn., 36(5):2210–2212, 2000

    Google Scholar 

  188. S. Johansson, D. Landström, and P. Nilsson, Silicon realization of an OFDM synchronization algorithm, in IEEE International Conference on Electronics, Circuits, and Systems, 1999, pp. 319–322

    Google Scholar 

  189. V. K. Jones and G. C. Raleigh, Channel estimation for wireless OFDM systems, in Proceedings of IEEE Global Telecommunications Conference, Sydney, Australia, November 1998, pp. 980–985

    Google Scholar 

  190. P. Kabal and B. Sayar, Performance of fixed-point FFT's: Rounding and scaling considerations, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, March 1986, pp. 221–224

    Google Scholar 

  191. L. D. Kabulepa, M. Glesner, and T. Kella, Finite-precision analysis of an OFDM burst synchronization scheme, in Proceedings of IEEE Global Telecommunications Conference, San Antonio, USA, November 2001, pp. 310–314

    Google Scholar 

  192. G. K. Kaleh, Channel equalization for block transmission systems, IEEE J. Sel. Areas Commun., 13(1):110–121, 1995

    Google Scholar 

  193. I. Kalet, The multitone channel, IEEE Trans. Commun., 37(2):119–124, 1989

    Google Scholar 

  194. J. Kalliokulju, P. Meche, M. J. Rinne, J. Vallström, P. Varshney, and S.-G. Häggman, Radio access selection for multistandard terminals, IEEE Commun. Mag., 39(10):116–124, 2001

    Google Scholar 

  195. S. Kandukuri and S. Boyd, Optimal power control in interference-limited fading wireless channels with outage-probability specifications, IEEE Trans. Wireless Commun., 1(1):46–55, 2002

    Google Scholar 

  196. J. Karaoguz, High-rate wireless personal area networks, IEEE Commun. Mag., 39(12):96–102, 2001

    Google Scholar 

  197. K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli, System-level design: Orthogonalization of concerns and platform-based design, IEEE Trans. Comput. Aid. Des., 19(12):1523–1543, 2000

    Google Scholar 

  198. N. Khaled, S. Thoen, and L. Deneire, Optimizing the joint transmit and receive MMSE design using mode selection, IEEE Trans. Commun., 53(4):730–737, 2005

    Google Scholar 

  199. J. M. Khoury, On the design of constant settling time AGC circuits, IEEE Trans. Circuits Syst. II, 45(3):283–294, 1998

    Google Scholar 

  200. A. C. J. Kienhuis, Design space exploration of stream-based dataflow architectures, Ph.D. Dissertation, Delft University of Technology, The Netherlands, January 1999

    Google Scholar 

  201. A. L. Kirsch, P. R. Gray, and D. W. Hanna, Field-test results of the AN/GSC-10 (KATHRYN) digital data terminal, IEEE Trans. Commun. Technol., 17(2):118–128, 1969

    Google Scholar 

  202. J. Kneip et al., Single chip programmable baseband ASSP for 5 GHz wireless LAN applications, IEICE Trans. Electron., 85-c(2):359–367, 2002

    Google Scholar 

  203. K. Kumar and R. J. Welke, Methodology engineering: A proposal for situation-specific methodology construction, in Challenges and Strategies for Research in Systems Development. New York: Wiley, 1992, pp. 257–269

    Google Scholar 

  204. U. Lambrette, M. Speth, and H. Meyr, OFDM burst frequency synchronization by single carrier training data, IEEE Commun. Lett., 1(2):46–48, 1997

    Google Scholar 

  205. J. Lampinen, Multiobjective nonlinear Pareto-optimization. Pre-investigation Report, Lappeenranta University of Technology

    Google Scholar 

  206. C. Lanschützer, A. Springer, L. Maurer, Z. Boos, and R. Weigel, Integrated adaptive LO leakage cancellation for W-CDMA direct upconversion transmitters, in Proceedings of IEEE Radio Frequency Integrated Circuits Symposium, Philadelphia, USA, June 2003, pp. 19–22

    Google Scholar 

  207. J. Lansford, A. Stephens, and R. Nevo, Wi-Fi (802.11b) and Bluetooth: Enabling coexistence, IEEE Network, 15:20–27, 2001

    Google Scholar 

  208. E. Lee and A. Sangiovanni-Vincentelli, Comparing models of computation, in Proceedings of International Conference on Computer-Aided Design, San Jose, USA, 1996, pp. 234–241

    Google Scholar 

  209. D. Leenaerts, G. Gielen, and R. A. Rutenbar, CAD solutions and outstanding challenges for mixed-signal and RF IC design, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, San Jose, USA, 4–8 November 2001, pp. 270–277

    Google Scholar 

  210. D. B. Leeson, A simple model of feedback oscillator noise spectrum, Proc. IEEE, 54(2):329–330, 1966

    Google Scholar 

  211. B. Le Floch, R. Halbert-Lassalle, and D. Castelain, Digital sound broadcasting to mobile receivers, IEEE Trans. Consum. Electron., 35(3):493–503, 1989

    Google Scholar 

  212. C. K. Lennard, P. Schaumont, G. de Jong, A. Haverinen, and P. Hardee, Standards for system-level design: Practical reality or solution in search of a question, in Proceedings of Design, Automation and Test in Europe Conference, Paris, France, March 2000, pp. 576–583

    Google Scholar 

  213. P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers, A methodology for architecture exploration of heterogeneous signal processing systems, in Proceedings of IEEE Workshop on Signal Processing Systems, Taipei, Taiwan, October 1999, pp. 181–190

    Google Scholar 

  214. B. Lindoff, Using a direct conversion receiver in EDGE terminals — A new DC offset compensation algorithm, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, London, UK, September 2000, pp. 959–963

    Google Scholar 

  215. A. Lovrich, G. Troullinos, and R. Chirayil, An all digital automatic gain control, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, April 1988, pp. 1734–1737

    Google Scholar 

  216. R. W. Lucky, Down into darkness or up into fog, IEEE Spectrum, 40(3):76, 2003

    Google Scholar 

  217. M. Luise and R. Reggianninni, Carrier frequency acquisition and tracking for OFDM systems, IEEE Trans. Commun., 44(11):1590–1598, 1996

    Google Scholar 

  218. H. Luo, Z. Jiang, B.-J. Kim, N. K. Shankaranarayanan, and P. Henry, Integrating wireless LAN and cellular data for the enterprise, IEEE Internet Comput., 7(2):25–33, 2003

    Google Scholar 

  219. G. Malmgren, Impact of carrier frequency offset, Doppler spread and time synchronization errors in OFDM based single frequency networks, in Proceedings of IEEE Global Telecommunications Conference, 1996, pp. 729–733

    Google Scholar 

  220. C. Mandl, M. Bacher, G. Krampl, and F. Kuttner, 0.35 μm COFDM receiver chip for DVB-T, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2000, pp. 76–77

    Google Scholar 

  221. P. Mannion, Smart antenna boost IQ of WLANs, startup says, in EETimes/CommsDesign, 18 August 2003

    Google Scholar 

  222. M. Martone, On the necessity of high performance RF front-ends in broadband wireless access employing multicarrier modulations (OFDM), in Proceedings of IEEE Global Telecommunications Conference, San Francisco, USA, November 2000, pp. 1407–1411

    Google Scholar 

  223. K. Mayaram, D. C. Lee, S. Moinian, D. A. Rich, and J. Roychowdhury, Computer-aided circuit analysis tools for RFIC simulation: Algorithms, features, and limitations, IEEE Trans. Circuits Syst. II, 47(4):274–286, 2000

    Google Scholar 

  224. D. McCain and G. Xu, Rapid prototyping for a high speed wireless local area network radio (http://ww.ednc.com/products/aptix/db/Rapid_prototype.pdf)

  225. T. McDermott, P. Ryan, M. Shand, D. Skellern, T. Percival, and N. Weste, A wireless LAN demodulator in a Pamette: Design and experience, in Proceedings of IEEE Symposium on FPGA-Based Custom Computing Machines, Napa Valley, USA, April 1997, pp. 40–45

    Google Scholar 

  226. J. Medbo and P. Schramm, Channel models for HIPERLAN/2 in different indoor scenarios, ETSI EP BRAN — 3ERI085B, March 1998

    Google Scholar 

  227. J. Medbo, H. Hallenberg, and J.-E. Berg, Propagation characteristics at 5 GHz in typical radio-LAN scenarios, in Proceedings of IEEE Vehicular Technology Conference Spring, Houston, USA, May 1999, pp. 185–189

    Google Scholar 

  228. J. Medbo and J.-E. Berg, Simple and accurate path loss modeling at 5 GHz in indoor environments with corridors, Proc. IEEE VTC, September 2000, pp. 30–36

    Google Scholar 

  229. MEDEA+, The MEDEA+ Design Automation Roadmap, 3rd release, 2002

    Google Scholar 

  230. MEDEA+, The MEDEA+ Design Automation Roadmap, 5th release, 2005

    Google Scholar 

  231. A. Mehrotra, L. van Ginneken, and Y. Trivedi, Design flow and methodology for 50M gate ASIC, in Proceedings of Asia and South Pacific Design Automation Conference, January 2003, pp. 640–647

    Google Scholar 

  232. M. Mehta, N. Drew, and C. Niedermeier, Reconfigurable terminals: An overview of architectural solutions, IEEE Commun. Mag., 39(8):82–89, 2001

    Google Scholar 

  233. J. Melander, T. Widhe, and L. Wanhammar, Design of an 128-point FFT processor for OFDM applications, in Proceedings of IEEE International Conference on Electronics, Circuits, and Systems, Rhodos, Greece, October 1996, pp. 828–831

    Google Scholar 

  234. H. Melgaard, Identification of physical models, Ph.D. Dissertation, Technical University of Denmark, Lyngby, 1994

    Google Scholar 

  235. P. J. W. Melsa, R. C. Younce, and C. E. Rohrs, Impulse response shortening for discrete multitone transceivers, IEEE Trans. Commun., 44(12):1662–1672, 1996

    Google Scholar 

  236. R. Merritt, Wi-Fi prices fall, EE Times, 29 August, 2003

    Google Scholar 

  237. H. Meyr, M. Moeneclay, and S. A. Fechtel, Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing. New York: Wiley, 1998

    Google Scholar 

  238. H. Meyr, Why we need all these MIPS in future wireless communication systems, presented at IEEE Workshop on Signal Processing Systems, Antwerp, Belgium, September 2001

    Google Scholar 

  239. P. Miliozzi, K. Kundert, K. Lampaert, P. Good, and M. Chian, A design system for RFIC: Challenges and solutions, Proc. IEEE, 88(10):1613– 1632, 2000

    Google Scholar 

  240. H. Minn, M. Zeng, and V. K. Bhargava, On timing offset estimation for OFDM systems, IEEE Commun. Lett., 4:242–244, 2000

    Google Scholar 

  241. H. Minn and V. K. Bhargava, A simple and efficient timing offset estimation for OFDM, in Proceedings of IEEE Vehicular Technology Conference, Tokyo, Japan, 2000, pp. 51–55

    Google Scholar 

  242. B. J. Minnis and P. A. Moore, A highly digitized multimode receiver architecture for 3G mobiles, IEEE Trans. Veh. Technol., 52(3):637– 653, 2003

    Google Scholar 

  243. J. Mitola, The software radio architecture, IEEE Commun. Mag., 33(5):26–38, 1995

    Google Scholar 

  244. W. Mohr and W. Konhauser, Access network evolution beyond third generation mobile communications, IEEE Commun. Mag., 38(12):122– 133, 2000; also: R. Becher, M. Dillinger, M. Haardt, and W. Mohr, Broad-band wireless access and future communication networks, Proc. IEEE, 89(1):58–75, 2001

    Google Scholar 

  245. G. E. Moore, Cramming more components onto integrated circuits, Electronics, 38(8):82–85, 1965

    Google Scholar 

  246. P. H. Moose, A technique for orthogonal frequency division multiplexing frequency offset correction, IEEE Trans. Commun., 42(10):2908–2914, 1994

    Google Scholar 

  247. M. Morelli and U. Mengali, An improved frequency offset estimator for OFDM applications, IEEE Commun. Lett., 3(3):75–77, 1999

    Google Scholar 

  248. G. Moretti, Tight squeeze: RF design, in EDN, 27 November 2003

    Google Scholar 

  249. D. R. Morgan, On discrete-time AGC amplifiers, IEEE Trans. Circuits Syst., 22(2):135–146, 1975

    Google Scholar 

  250. L. Moult and J. E. Chen, The K-model: RF IC modelling for communication systems simulation, in IEE Colloquium on Analog Signal Processing, October 1998

    Google Scholar 

  251. G. Muller, The arisal of a system architect, 25 April 2003 (www.extra.research.philips.com/natlab/sysarch)

  252. S. H. Müller-Weinfurtner et al., Analysis of frame and frequency synchronizer for (bursty) OFDM, in Proceedings of IEEE Global Telecommunications Conference, November 1998, pp. 201–206

    Google Scholar 

  253. S. H. Müller-Weinfurtner, Burst frame and frequency synchronization with a sandwich preamble, in Proceedings of IEEE Global Telecommunications Conference, San Antonio, USA, November 2001, pp. 1366–1370

    Google Scholar 

  254. M. Münch, B. Wurth, R. Mehra, J. Sproch, and N. When, Automating RT-level operand isolation to minimize power consumption in datapaths, in Proceedings of Design, Automation and Test in Europe Conference, March 2000, pp. 624–631

    Google Scholar 

  255. P. K. Murthy, E. G. Cohen, and S. Rowland, System Canvas: A new design environment for embedded DSP and telecommunications systems, in Proceedings of International Symposium on Hardware/ Software Codesign, Copenhagen, Denmark, April 2001, pp. 54–59

    Google Scholar 

  256. C. Muschallik, Influence of RF oscillators on an OFDM signal, IEEE Trans. Consum. Electron., 41(3):592–603, 1995

    Google Scholar 

  257. C. Muschallik, Ein Beitrag zur Optimierung der Empfangbarkeit von Orthogonal-Frequency-Division-Multiplexing (OFDM) — Signalen, Ph.D. Dissertation, Technische Universität Braunschweig, Germany, 2000

    Google Scholar 

  258. M. Nakagawa, H. Zhang, and H. Sato, Ubiquitous homelinks based on IEEE 1394 and ultra wideband solutions, IEEE Commun. Mag., 41(4):74–82, 2003

    Google Scholar 

  259. R. Ness, S. Thoen, L. Van der Perre, B. Gyselinckx, and M. Engels, Interference mitigation in OFDM-based WLANs, in Proceedings of Multi-Carrier Spread Spectrum Workshop, Oberpfaffenhofen, Germany, September 1999

    Google Scholar 

  260. T. Nicolay, Theoretische und experimentelle Untersuchung eines breitbandigen, direktmischenden Empfängers unter besonderer Berücksichtigung des Einsatzes von Fuzzy Logic in der Leistungsverstärkung, Ph.D. Dissertation, Universität des Saarlandes, Germany

    Google Scholar 

  261. R. Niemann, Hardware/Software Co-Design for Data Flow Dominated Embedded Systems. Boston: Kluwer, 1998

    Google Scholar 

  262. S. Note, W. Geurts, F. Catthoor, and H. De Man, Cathedral III: Architecture driven high-level synthesis for high throughput DSP applications, in Proceedings of ACM/IEEE Design Automation Conference, San Francisco, USA, June 1991, pp. 597–602

    Google Scholar 

  263. J. O'Brien, J. Mather, and B. Holland, A 200 MIPS single-chip 1K FFT processor, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, pp. 166–167, 1989

    Google Scholar 

  264. J. E. Ohlson, Exact dynamics of automatic gain control, IEEE Trans. Commun., 22(1):72–75, 1974

    Google Scholar 

  265. S. Ohr, Analog age pronounced live and well, EE Times, 18 February 2004

    Google Scholar 

  266. T. Ojanpera and R. Prasad, An overview of third-generation wireless personal communications: A European perspective, IEEE Pers. Commun., 5(6):59–65, 1998

    Google Scholar 

  267. K. Osgood et al., A flexible approach to 5-GHz U-NII band WLAN radio development, in Proceedings of Workshop on Applications of Radio Science, Australia, 21–23 September 1997, pp. 175–180

    Google Scholar 

  268. M. Page-Jones, Practical Guide to Structured Systems Design, 2nd edition. Englewood Cliffs, NJ: Prentice-Hall, 1988

    Google Scholar 

  269. J. Palicot and C. Roland, A new concept for wireless reconfigurable receivers, IEEE Commun. Mag., 41(7):124–132, 2003

    Google Scholar 

  270. P. R. Panda, SystemC — A modeling platform supporting multiple design abstractions, in Proceedings of International Symposium on System Synthesis, Montreal, Canada, September 2001, pp. 75–80

    Google Scholar 

  271. P. Y. Papalambros and D. J. Wilde, Principles of Optimal Design — Modeling and Computation. Cambridge: Cambridge University Press, 2000

    Google Scholar 

  272. S. N. Parekh, Evolution of wireless home networks: The role of policymakers in a standards-based market, M.S. Thesis, Massachusetts Institute of Technology, June 2001

    Google Scholar 

  273. V. Pareto, Manuale di economia politica con una introduzione alla scienza sociale. Milano: Società Editrice Libraria, 1906

    Google Scholar 

  274. K. K. Parhi, Systematic synthesis of DSP data format converters using life-time analysis and forward—backward register allocation, IEEE Trans. Circuits Syst. II, 39(7):423–440, 1992

    Google Scholar 

  275. R. Paško, L. Rijnders, P. Schaumont, S. Vernalde, and D. Durackova, High-performance flexible all-digital quadrature up and down converter chip, in Proceedings of Custom Integrated Circuits Conference, Orlando, USA, May 2000, pp. 43–46

    Google Scholar 

  276. R. Paško, S. Vernalde, and P. Schaumont, Techniques to evolve a C++ based system design language, in Proceedings of Design, Automation and Test in Europe Conference, Paris, France, March 2002, pp. 302– 309

    Google Scholar 

  277. A. Peled and A. Ruiz, Frequency domain data transmission using reduced computational complexity algorithms, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Denver, USA, April 1980, pp. 964–967

    Google Scholar 

  278. J. M. Pereira, Reconfigurable radio: The evolving perspectives of different players, in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, September/ October 2001, pp. 79–84

    Google Scholar 

  279. J. Perl, A. Shpigel, and A. Reichman, Adaptive receiver for digital communication over HF channels, IEEE J. Sel. Areas Commun., 5(2):304– 308, 1987

    Google Scholar 

  280. L. Peterson and B. Davie, Computer Networks — A System Approach. San Francisco: Morgan Kaufman, 1996

    Google Scholar 

  281. J. Piaget, in Proceedings of Workshop ‘L'interdisciplinarité — Problèmes d'enseignement et de recherche dans les universités', Nice, France, September 1970 (OECD 1972), p. 144

    Google Scholar 

  282. T. Pollet and M. Peeters, Synchronization with DMT modulation, IEEE Commun. Mag., 37(4):80–86, 1999

    Google Scholar 

  283. T. Pollet, M. Peeters, M. Moonen, and L. Vandendorpe, Equalization for DMT-based broadband modems, IEEE Commun. Mag., 38(5):106–113, 2000

    Google Scholar 

  284. M. Potkonjak and J. Rabaey, Algorithm selection: A quantitative optimization-intensive approach, IEEE Trans. CAD, 18(5):524–532, 1999

    Google Scholar 

  285. R. Prasad, J. Schwarz DaSilva, and B. Arroyo-Fernández, Air interface access schemes for wireless communications, IEEE Commun. Mag., 37(9):104–105, 1999

    Google Scholar 

  286. J. G. Proakis, Digital Communications, 3rd edition. New York: McGraw Hill, 1995

    Google Scholar 

  287. J. G. Proakis and D. G. Manolakis, Digital Signal Processing, 3rd edition. Upper Saddle River, NJ: Prentice-Hall, 1996

    Google Scholar 

  288. V. Prodanov, G. Palaskas, J. Glas, and V. Boccuzzi, A CMOS AGC-less IF strip for Bluetooth, in Proceedings of European Solid-State Circuits Conference, Villach, Austria, September 2001, pp. 488–491

    Google Scholar 

  289. G. Prophet, System-level design languages: To C or not to C? in EDN, pp. 135–146, 14 October 1999

    Google Scholar 

  290. G. Qu, What is the limit of energy saving by dynamic voltage scaling, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, San Jose, USA, November 2001, pp. 560–563

    Google Scholar 

  291. F. H. Raab et al., Power amplifiers and transmitters for RF and microwave, IEEE Trans. Microwave Theory Techn., 50(3):814–826, 2002

    Google Scholar 

  292. J. M. Rabaey, Digital Integrated Circuits — A Design Perspective, 1st edition. Upper Saddle River, NJ: Prentice-Hall, 1996

    Google Scholar 

  293. Y. Raivio, 4G — Hype or reality, in Proceedings of IEE 3G Mobile Communication Technologies Conference, March 2001, pp. 346–350

    Google Scholar 

  294. T. S. Rappaport, A. Annamalai, R. M. Buehrer, and W. H. Tranter, Wireless communications: Past events and a future perspective, IEEE Commun. Mag., 50(5):148–161, 2002

    Google Scholar 

  295. B. Razavi, Design considerations for direct-conversion receivers, IEEE Trans. Circuits Syst. II, 44(6):428–435, 1997

    Google Scholar 

  296. B. Razavi, RF Microelectronics. Englewood Cliffs, NJ: Prentice-Hall, 1997

    Google Scholar 

  297. B. Razavi, A 2.4 GHz CMOS receiver for IEEE 802.11 wireless LANs, IEEE J. Solid-State Circuits, 34(10):1382–1385, 1999

    Google Scholar 

  298. W. Rhett Davis et al., A design environment for high-throughput, low-power dedicated signal processing systems, IEEE J. Solid State Circuits, 37(3):420–431, 2002

    Google Scholar 

  299. M. J. Riezenman, The rebirth of radio, IEEE Spectrum, 38(1):62–64, 2001

    Google Scholar 

  300. L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens, High-level analysis of clock regions in a C++ system description, in IEICE Trans. Fund. Electron. Commun. Comput. Sci. — Special Section on VLSI Design and CAD Algorithms, E83-A(12):2631–2632, 2000

    Google Scholar 

  301. P. Rissone and G. Cascini, Creativity as means for technical innovation, in Proceedings of SEFI Annual Conference, Firenze, Italy, September 2002

    Google Scholar 

  302. T. Robles et al., QoS support for an all-IP system beyond 3G, IEEE Commun. Mag., 39(8):64–72, 2001

    Google Scholar 

  303. H. Rohling, R. Grünheid, and K. Brüninghaus, Comparison of multiple access schemes for an OFDM downlink system, in Proceedings of International Workshop on Multi-Carrier Spread Spectrum, Oberpfaffenhofen, Germany, April 1997

    Google Scholar 

  304. B. Rose, Home networks: A standards perspective, IEEE Commun. Mag., 12:78–85, 2001

    Google Scholar 

  305. P. L. Rosenfield, The potential of transdisciplinary research for sustaining and extending linkages between the health and social sciences, Soc. Sci. Med., 35(11):1343–1357

    Google Scholar 

  306. J. A. Rowson and A. Sangiovanni-Vincentelli, Interface-based design, in Proceedings of ACM/IEEE Design Automation Conference, Anaheim, USA, June 1997, pp. 178–183

    Google Scholar 

  307. J. Rumbaugh, G. Booch, and I. Jacobson, The Unified Modeling Language Reference Manual. Reading, MA: Addison-Wesley, 1998

    Google Scholar 

  308. P. Ryan, T. Percival, and D. Skellern, A 16-point FFT IC for wireless communication systems, in Workshop on Applications of Radio Science (WARS) Digest, Canberra, Australia, June 1995

    Google Scholar 

  309. P. Ryan et al., A single chip PHY COFDM modem for IEEE 802.11a with integrated ADCs and DACs, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, 2001, pp. 338–339

    Google Scholar 

  310. K. Sakiyama, P. Schaumont, and I. Verbauwhede, Finding the best system design flow for a high-speed JPEG encoder, in Proceedings of Asia and South Pacific Design Automation Conference, Kitakyushu, Japan, January 2003, pp. 577–578

    Google Scholar 

  311. T. Sakurai, Perspectives on power-aware electronics, in IEEE Solid-State Circuits Conference Digest, San Francisco, USA, February 2003, pp. 26–29

    Google Scholar 

  312. A. A. M. Saleh and D. C. Cox, Improving the power-added efficiency of FET amplifiers operating with varying-envelope signals, IEEE Trans. Microwave Theory Techn., 83(1):51–56, 1983

    Google Scholar 

  313. A. A. M. Saleh and R. A. Valenzuela, A statistical model for multipath propagation, IEEE Trans. Sel. Areas Commun., 5(2):128–137, 1987

    Google Scholar 

  314. B. R. Salzberg, Performance of an efficient parallel data transmission system, IEEE Trans. Commun., 15(6):805–813, 1967

    Google Scholar 

  315. H. Sampath, S. Talwar, J. Tellado, V. Erceg, and A. Paulraj, A fourth-generation MIMO–OFDM broadband wireless system: Design, performance, and field trial results, IEEE Commun. Mag., 40(9):143–149, 2002

    Google Scholar 

  316. S. Sampei and K. Feher, Adaptive DC-offset compensation algorithm for burst mode operated direct conversion receivers, in Proceedings of IEEE Vehicular Technology Conference, May 1992, pp. 93–96

    Google Scholar 

  317. R. Saracco, Forecasting the future of information technology: How to make research investment more cost-effective? IEEE Commun. Mag., 41(12):38–45, 2003

    Google Scholar 

  318. H. Sari, G. Karam, and I. Jeanclaude, Frequency-domain equalization of mobile radio and terrestrial broadcast channels, in Proceedings of IEEE Global Telecommunications Conference, San Francisco, USA, November 1994, pp. 1–5

    Google Scholar 

  319. H. Sari, G. Karam, and I. Jeanclaude, Transmission techniques for digital terrestrial TV broadcasting, IEEE Commun. Mag., 33(2):100– 109, 1995. See also comments in IEEE Commun. Mag., 33(11):22–26, 1995

    Google Scholar 

  320. P. Savage, The perfect handheld: Dream on, IEEE Spectrum, 40(1):44– 46, 2003

    Google Scholar 

  321. A. Scaglione, S. Barbarossa, and G. B. Giannakis, Filterbank transceivers optimizing information rate in block transmissions over dispersive channels, IEEE Trans. Inform. Theory, 45(3):1019–1032, 1999

    MathSciNet  MATH  Google Scholar 

  322. P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and I. Bolsens, A design environment for the design of complex high-speed ASICs, in Proceedings of ACM/IEEE Design Automation Conference, San Francisco, USA, June 1998, pp. 315–320

    Google Scholar 

  323. P. Schaumont, R. Cmar, S. Vernalde, M. Engels, and I. Bolsens, Hardware reuse at the behavioral level, in Proceedings of ACM/IEEE Design Automation Conference, New Orleans, USA, June 1999, pp. 784–789

    Google Scholar 

  324. P. Schaumont, R. Cmar, S. Vernalde, and M. Engels, A 10-Mb/s upstream cable modem with automatic equalization, in Proceedings of ACM/IEEE Design Automation Conference, New Orleans, USA, June 1999, pp. 337–340

    Google Scholar 

  325. P. Schaumont, I. Verbauwhede, and H. De Man, Post-PC systems, architectures and design challenges, presented at CANDE 2001 Workshop, Jackson Hole, USA, September 2001

    Google Scholar 

  326. P. Schaumont, I. Verbauwhede, M. Sarrafzeadeh, and K. Keutzer, A quick safari through the reconfiguration jungle, in Proceedings of ACM/IEEE Design Automation Conference, June 2001, pp. 18–22

    Google Scholar 

  327. H.-J. Schlebusch et al., Transaction based design: Another buzzword or the solution to a design problem? in Proceedings of Design, Automation and Test in Europe Conference, München, Germany, March 2003

    Google Scholar 

  328. T. Schmidl and D. C. Cox, Robust frequency and timing synchronization for OFDM, IEEE Trans. Commun., 45(12):1613–1621, 1997

    Google Scholar 

  329. [Schön83] D. Schön, The Reflective Practitioner. New York: Basic Books, 1983

    Google Scholar 

  330. C. Schurgers, Energy-aware communication systems, Ph.D. Dissertation, University of California, Los Angeles, USA, November 2002

    Google Scholar 

  331. C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, Optimizing sensor networks in the energy—latency—density design space, IEEE Trans. Mobile Comput., 1(1):70–80, 2002

    Google Scholar 

  332. T. Schwanenberger, M. Ipek, S. Roth, and H. Schemmann, A multi standard single-chip transceiver covering 5.15 to 5.85 GHz, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 2003, pp. 350–351

    Google Scholar 

  333. S. Shakkottai, T. S. Rappaport, and P. C. Karlsson, Cross-layer design for wireless networks, IEEE Commun. Mag., 41(10):74–80, 2003

    Google Scholar 

  334. T. J. Shan and T. Kailath, Adaptive algorithms with an automatic gain control feature, IEEE Trans. Circuits Syst. II, 35(1):122–127, 1988. See also S. Karni and G. Zeng, Comments, with Reply, on ‘Adaptive algorithms with an automatic gain control feature’ by T. J. Shan and T. Kailath, IEEE Trans. Circuits Syst. II, 37(7):974–975, 1990

    Google Scholar 

  335. M. Shen, L.-R. Zheng, and H. Tenhunen, Cost and performance analysis for mixed-signal system implementation: System-on-chip or system-on-package? IEEE Trans. Electron. Packag. Manufact., 25(4):262–272, 2002

    Google Scholar 

  336. S. Sheng, A. Chandrakasan, and R. W. Brodersen, A portable multimedia terminal, IEEE Commun. Mag., 30(12):64–75, 1992

    Google Scholar 

  337. M. H. Sherif, Intelligent homes: A new challenge in telecommunications standardization, IEEE Commun. Mag., 40(1):8, 2002

    Google Scholar 

  338. M. Shibutani, T. Kanai, K. Emura, and J. Namiki, Feasibility studies on an optical fiber feeder system for microcellular mobile communication systems, in Proceedings of IEEE International Conference on Communications, June 1991, pp. 1176–1181

    Google Scholar 

  339. M. Shimozawa, K. Kawakami, K. Itoh, A. Iida, and O. Ishida, A novel sub-harmonic pumping direct conversion receiver with high instantaneous dynamic range, in IEEE MTT-S International Microwave Symposium Digest, San Francisco, USA, June 1996, pp. 819–822

    Google Scholar 

  340. M.-T. Shiue, K.-H. Huang, C.-C. Lu, C.-K. Wang, and W. I. Way, A VLSI design of dual-loop automatic gain control for dual-mode QAM/VSB CATV modem, in Proceedings of IEEE International Symposium on Circuits and Systems, Monterey, USA, May/June 1998, pp. 490–493

    Google Scholar 

  341. R. Siegmund and D. Müller, SystemCSV: An extension of SystemC for mixed multi-level communication modeling and interface-based system design, in Proceedings of Design, Automation and Test in Europe Conference, München, Germany, March 2001, pp. 26–32

    Google Scholar 

  342. R. Siegmund and D. Müller, Automatic synthesis of communication controller hardware from protocol specifications, IEEE Des. Test Comput., 19(4):84–95, 2002

    Google Scholar 

  343. S. Simoens, M. de Courville, F. Bourzeix, and P. de Champs, New I/Q imbalance modeling and compensation in OFDM systems with frequency offset, in Proceedings of International Symposium on Personal, Indoor, and Mobile Radio Communications, Lisboa, Portugal, September 2002, pp. 561–566

    Google Scholar 

  344. D. Singh et al., Power conscious CAD tools and methodologies: A perspective, Proc. IEEE, 83(4):570–594, 1995

    Google Scholar 

  345. V. Sinyanskiy, J. Cukier, A. Davidson, and T. Poon, Front-end of a digital ATV receiver, IEEE Trans. Consum. Electron., 44(3):817–822, 1998

    Google Scholar 

  346. D. J. Skellern et al., A high-speed wireless LAN, IEEE Micro, 17(1):40–47, 1997

    Google Scholar 

  347. P. J. Smith, M. Shafi, and H. Gao, Quick simulation: A review of importance sampling techniques in communications systems, IEEE J. Sel. Areas Commun., 15(4):597–613, 1997

    Google Scholar 

  348. P. Smulders, Exploiting the 60-GHz band for local wireless multimedia access: Prospects and future directions, IEEE Commun. Mag., 40(1):140–147, 2002

    Google Scholar 

  349. Sony International Europe, Preamble structures for Hiperlan type 2 systems, ETSI BRAN, Technical Report, HL13SON1a, 1999

    Google Scholar 

  350. C. Souza, Intersil, a leading WLAN chip player, exits a market ripe for consolidation, in EE Times, 22 July 2003

    Google Scholar 

  351. E. Sperling, Is Moore's law irrelevant? in Electronic News, 14 August 2003

    Google Scholar 

  352. M. Speth, F. Classen, and H. Meyr, Frame synchronization in OFDM systems in frequency selective fading channels, in Proceedings of IEEE Vehicular Technology Conference, Phoenix, USA, May 1997, pp. 1807–1811

    Google Scholar 

  353. M. Speth, D. Daecke, and H. Meyr, Minimum overhead burst synchronization for OFDM-based broadband transmission, in Proceedings of IEEE Global Telecommunications Conference, Sydney, Australia, November 1998, pp. 2777–2782

    Google Scholar 

  354. M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, Optimum receiver design for OFDM-based broadband transmission: Part II, IEEE Trans. Commun., 49(4):571–578, 2001

    Google Scholar 

  355. Semiconductor Research Corporation (SRC), Research needs for mixed-signal technologies. Report of the 2000 Mixed-Signal Task Force, 25 October 2000

    Google Scholar 

  356. S. Srikanteswara, R. C. Palat, J. H. Reed, and P. Athanas, An overview of configurable computing machines for software radio handsets, IEEE Commun. Mag., 41(7):134–141, 2003

    Google Scholar 

  357. B. Stantchev and G. Fettweis, Optimum frame synchronization for orthogonal FSK in flat fading channels and one burst application, Proc. IEEE WCNC, September 1999, pp. 1070–1074

    Google Scholar 

  358. R. Steele, Beyond 3G, in Proceedings of IEEE International Zurich Seminar on Broadband Communications, 2000, pp. 1–7

    Google Scholar 

  359. E. Stolterman, How system designers think — About design and methods, Scand. J. Inform. Syst., 4:137–150, 1992

    Google Scholar 

  360. T. Struhsaker, Trends in WLAN silicon integration, panel on Key technologies enabling success of Wi-Fi public access networks, presented at IEEE Wireless Communications and Networking Conference, New Orleans, USA, March 2003

    Google Scholar 

  361. E. Swartzlander and G. Hallnor, High speed FFT processor implementation, in Proceedings of IEEE Workshop on VLSI Signal Processing, November 1984, pp. 27–34

    Google Scholar 

  362. The Open SystemC Initiative (OSCI) (http://www.systemc.org)

  363. K. Taura, M. Tsujishita, M. Takeda, H. Kato, M. Ishida, and Y. Ishida, A digital audio broadcasting (DAB) receiver, IEEE Trans. Consum. Electron., 42(3):322–327, 1996

    Google Scholar 

  364. S. Teger and D. J. Waks, End-user perspectives on home networking, IEEE Commun. Mag., 40(4):114–119, 2002

    Google Scholar 

  365. J. Tellado-Mourelo, Peak to average power reduction for multicarrier modulation, Ph.D. Dissertation, Stanford University, USA, September 1999

    Google Scholar 

  366. S. Thoen, Transmit optimization for OFDM/SDMA-based wireless local area networks, Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, May 2002

    Google Scholar 

  367. S. Thoen, L. Van der Perre, and M. Engels, Modeling the channel time-variance for fixed wireless communications, IEEE Commun. Lett., 6(8):331–333, 2002

    Google Scholar 

  368. C. D. Thompson, Fourier transforms in VLSI, IEEE Trans. Comput., 32(11):1047–1057, 1983

    MATH  Google Scholar 

  369. J. Thomson et al., An integrated 802.11a baseband and MAC processor, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, 2002, pp. 126–127

    Google Scholar 

  370. J.-P. Tolvanen, Incremental method engineering with modeling tools, Ph.D. Dissertation, University of Jyväskylä, 1998

    Google Scholar 

  371. [Trân-Thông76] Trân-Thông and B. Liu, Fixed-point fast Fourier transform error analysis, IEEE Trans. Acoust. Speech Signal Process., 24(6):563–573, 1976

    Google Scholar 

  372. T. E. Truman, T. Pering, R. Doering, and R. W. Brodersen, The InfoPad multimedia terminal: A portable device for wireless information access, IEEE Trans. Comput., 47(10):1073–1087, 1998

    Google Scholar 

  373. J. Tubbax, A digital approach to low-cost low-power broadband radios, Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, April 2004

    Google Scholar 

  374. F. Tufvesson, O. Edfors, and M. Faulkner, Time and frequency synchronization for OFDM using PN-sequence preambles, in Proceedings of IEEE Vehicular Technology Conference, 1999, pp. 2203–2207

    Google Scholar 

  375. OMG, Unified Modeling Language (http://www.omg.org/uml)

  376. P. Vanassche, G. Gielen, and W. Sansen, Efficient time-domain simulation of telecom front-ends using a complex damped exponential signal model, in Proceedings of Design, Automation and Test in Europe (DATE) Conference, March 2001, pp. 169–175

    Google Scholar 

  377. J. J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Börjesson, On channel estimation in OFDM systems, in Proceedings of IEEE Vehicular Technology Conference, Chicago, USA, 1995, pp. 815–819

    Google Scholar 

  378. J. J. van de Beek, M. Sandell, and P. O. Börjesson, ML estimation of time and frequency offset in OFDM systems, IEEE Trans. Signal Process., 45:1800–1805, 1997

    MATH  Google Scholar 

  379. P. Vandenameele, Space division multiple access for wireless local area networks, Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, October 2000

    Google Scholar 

  380. L. Van der Perre, S. Thoen, P. Vandenameele, B. Gyselinckx, and M. Engels, Adaptive loading strategy for a high speed OFDM-based WLAN, in Proceedings of IEEE Global Communications Conference, Sydney, Australia, November 1998, pp. 1936–1940

    Google Scholar 

  381. G. Vandersteen et al., A methodology for efficient high-level dataflow simulation of mixed-signal front-ends of digital telecom transceivers, in Proceedings of ACM/IEEE Design Automation Conference, Los Angeles, USA, June 2000, pp. 440–445

    Google Scholar 

  382. G. Vandersteen, P. Wambacq, S. Donnay, W. Eberle, and Y. Rolain, FAST — An efficient high-level dataflow simulator of mixed-signal front-ends of digital telecom transceivers, in Low-Power Design Techniques and CAD Tools for Analog and RF Integrated Circuits, P. Wambacq, G. Gielen, and J. Gerrits, Eds. Boston: Kluwer, 2001, pp. 43–59

    Google Scholar 

  383. J. Van Driessche, G. Cantone, W. Eberle, B. Côme, and S. Donnay, Transmitter cost/efficiency exploration for 5-GHz WLAN, in Proceedings of IEEE Radio and Wireless Conference, Boston, USA, August 2003, pp. 35–38

    Google Scholar 

  384. A. van Lamsweerde, Requirements engineering in the year 00: A research perspective, in Proceedings of International Conference on Software Engineering, Limerick, Ireland, June 2000

    Google Scholar 

  385. A. van Lamsweerde and E. Letier, From object orientation to goal orientation: A paradigm shift for requirements engineering, in Proceedings of Workshop on Radical Innovations of Software and Systems Engineering, Venice, Italy, 2003

    Google Scholar 

  386. G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels, and I. Bolsens, Hardware/software partitioning of embedded system in OCAPI-xl, in Proceedings of International Symposium on Hardware/Software Codesign, April 2001, pp. 30–35

    Google Scholar 

  387. R. van Nee, G. Awater, M. Morikura, H. Takanashi, M. Webster, and K. W. Halford, New high-rate wireless LAN standards, IEEE Commun. Mag., 37(12):82–88, 1999

    Google Scholar 

  388. K. Van Rompaey, D. Verkest, I. Bolsens, and H. De Man, CoWare — A design environment for heterogeneous hardware/software systems, in Proceedings of European Design Automation Conference, September 1996, pp. 252–257

    Google Scholar 

  389. I. Vassiliou, Design methodologies for RF and mixed-signal systems, Ph.D. Dissertation, University of California at Berkeley, USA, 1999

    Google Scholar 

  390. D. Veithen et al., A 70 Mb/s variable-rate DMT-based modem for VSDL, in IEEE International Solid-State Circuits Conference Digest, San Francisco, USA, February 1999, pp. 248–249

    Google Scholar 

  391. F. J. Velez and L. M. Correia, Mobile broadband services: Classification, characterization, and deployment scenarios, IEEE Commun. Mag., 40(4):142–150, 2002

    Google Scholar 

  392. M. Vergara, M. Strum, W. Eberle, and B. Gyselinckx, A 195 kFFT/s 256-point high performance FFT/IFFT processor for OFDM applications, in Proceedings of SBT/IEEE International Telecommunications Symposium, São Paulo, Brazil, August 1998, pp. 273–278

    Google Scholar 

  393. M. Vergara, Projeto de uma macro-célula FFT/IFFT para aplicações sem fio, M.S. Thesis, Universidade de São Paulo, Brazil, 1998

    Google Scholar 

  394. IEEE Std. 1364–1995, Verilog Language, 1995 168

    Google Scholar 

  395. D. Verkest, J. Kunkel, and F. Schirrmeister, System level design using C++, in Proceedings of Design, Automation and Test in Europe Conference, Paris, France, March 2000, pp. 74–81

    Google Scholar 

  396. D. Verkest, W. Eberle, P. Schaumont, B. Gyselinckx, and S. Vernalde, C++ based system design of a 72 Mb/s OFDM transceiver for wireless LAN, in Proceedings of Custom Integrated Circuits Conference, San Diego, USA, May 2001, pp. 433–439

    Google Scholar 

  397. F. Vermeulen, F. Catthoor, D. Verkest, and H. De Man, Formalized three-layer system-level model and reuse methodology for embedded data-dominated applications, IEEE Trans. VLSI Syst., 8(2):207–216, 2000

    Google Scholar 

  398. F. Vermeulen, Reuse of system-level design components in data-dominated digital systems, Ph.D. Dissertation, Katholieke Universiteit Leuven, December 2002

    Google Scholar 

  399. S. Vernalde, P. Schaumont, and I. Bolsens, An object-oriented programming approach for hardware design, in Proceedings of IEEE Computer Society Workshop on VLSI, Orlando, USA, April 1999, pp. 68–73

    Google Scholar 

  400. IEEE Std. 1076-1993, VHDL Language, 1993 168

    Google Scholar 

  401. W. K. Victor and M. H. Brockman, The application of linear servo theory to the design of AGC loops, Proc. IRE, 48:234–238, 1960

    Google Scholar 

  402. S. Walker, A high speed feed forward pseudo automatic gain control circuit for an amplifier cascade, in IEEE MTT-S International Microwave Symposium Digest, San Diego, USA, May 1994, pp. 941– 944

    Google Scholar 

  403. T. Walzman and M. Schwartz, Automatic equalization using the discrete frequency domain, IEEE Trans. Inform. Theory, 19(1):59–68, 1973

    Google Scholar 

  404. P. Wambacq and W. M. Sansen, Distortion Analysis of Analog Integrated Circuits. Boston: Kluwer, 1998

    Google Scholar 

  405. P. Wambacq, P. Dobrovolný, S. Donnay, M. Engels, and I. Bolsens, Compact modeling of nonlinear distortion in analog communication circuits, in Proceedings of Design, Automation and Test in Europe Conference, Paris, France, March 2000, pp. 350–354

    Google Scholar 

  406. P. Wambacq, G. Vandersteen, J. Phillips, J. Roychowdhury, W. Eberle, B. Yang, D. Long, and A. Demir, CAD for RF circuits, in Proceedings of Design, Automation and Test in Europe Conference, München, Germany, March 2001, pp. 520–526

    Google Scholar 

  407. P. Wambacq, G. Vandersteen, P. Dobrovolny, M. Goffioul, W. Eberle, M. Badaroglu, and S. Donnay, High-level simulation and modeling tools for mixed-signal front-ends of wireless systems, in Proceedings of Workshop on Advances in Analog Circuit Design (AACD), Spa, Belgium, March 2002

    Google Scholar 

  408. P. Wambacq, G. Vandersteen. P. Dobrovolny, M. Goffioul, W. Eberle, M. Badaroglu, and S. Donnay, High-level simulation and modeling tools for mixed-signal front-ends of wireless systems, in Analog Circuit Design: Structured Mixed-Mode Design, Multi-Bit Sigma Delta Converters, Short Range RF Circuits, M. Steyaert, A. H. M. van Roermund, J. H. Huijsing, Eds. Boston: Kluwer, 2002, pp. 77–94

    Google Scholar 

  409. P. C. Wang and C. R. Ward, A software AGC scheme for integrated communication receivers, in Proceedings of IEEE National Aerospace and Electronics Conference, 1989, pp. 2085–2091

    Google Scholar 

  410. W. J. Weber, Decision-directed automatic gain control for MAPSK systems, IEEE Trans. Commun., 23(5):510–517, 1975

    MATH  Google Scholar 

  411. S. B. Weinstein and P. M. Ebert, Data transmission by frequency division multiplexing using the Discrete Fourier Transform, IEEE Trans. Commun., 19(5):628–634, 1971

    Google Scholar 

  412. M. Weiser, The computer for the 21st century, Sci. Am., 265(3):94–104, 1991

    Google Scholar 

  413. N. Weste et al., A 50-MHz 16-point FFT processor for WLAN applications, in Proceedings of IEEE Custom Integrated Circuits Conference, Santa Clara, USA, May 1997, pp. 457–460

    Google Scholar 

  414. B. Wheeler and L. Gwennap, A Guide to Wireless LAN Chip Sets, 1st edition. Sunnyvale, CA: The Linley Group, 2003

    Google Scholar 

  415. I. J. Wickelgren, Local area networks go wireless, IEEE Spectrum, 33(9):34–40, 1996

    Google Scholar 

  416. A. Wiesler, Parametergesteuertes Software Radio für Mobilfunk-systeme, Ph.D. Dissertation, Universität Karlsruhe (TH), Germany, May 2001

    Google Scholar 

  417. R. Williams, Improving efficiency when detecting WLAN preambles, in CommsDesign, 18 November 2003 (http://www.commsdesign.com/story/OEG20031118S0024)

  418. R. Wittmann, J. Hartung, H.-J. Wassener, G. Tränkle, and M. Schröter, Hot topic session: RF design technology for highly integrated communication systems, in Proceedings of Design, Automation and Test in Europe Conference, Munich, Germany, 2003, pp. 842–847

    Google Scholar 

  419. J. Wojituk, Analysis of frequency conversion for M-QAM and M-PSK modems, Dissertation, Chalmers Univ. of Tech., June 2005

    Google Scholar 

  420. M. Wouters, G. Vanwijnsberghe, P. Van Wesemael, T. Huybrechts, and S. Thoen, Real-time implementation on FPGA of an OFDM based wireless LAN modem extended with adaptive loading, in Proceedings of European Solid-State Circuits Conference, Firenze, Italy, September 2002, pp. 531–534

    Google Scholar 

  421. B. Yang, K. Letaief, R. Cheng, and C. Zhigang, Timing recovery for OFDM transmission, IEEE J. Sel. Areas in Commun., 18(11):2278– 2291, 2000

    Google Scholar 

  422. D. G. W. Yee, A design methodology for highly-integrated low-power receivers for wireless communications, Ph.D. Dissertation, University of California at Berkeley, USA, Spring 2001

    Google Scholar 

  423. W. C. Yeh, Arithmetic module design and its application to FFT, Ph.D. Dissertation, National Chiao-Tung University, China, October 2001

    Google Scholar 

  424. K. Y. Yun and A. E. Dooply, Pausible clocking-based heterogeneous systems, IEEE Trans. VLSI Syst., 7(4):482–488, 1999

    Google Scholar 

  425. J. Zander, Trends in resource management future wireless networks, in Proceedings of IEEE Wireless Communications and Networking Conference, Chicago, USA, September 2000, pp. 159–163

    Google Scholar 

  426. M. Zargari et al., A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems, IEEE J. Solid-State Circuits, 37(12):1688– 1694, 2002

    Google Scholar 

  427. N. Zhang, Algorithm/architecture co-design for wireless communications systems, Ph.D. Dissertation, University of California at Berkeley, USA, Fall 2001

    Google Scholar 

  428. J. Zhao, Z. Guo, and W. Zhu, Power efficiency in IEEE 802.11a WLAN with cross-layer adaptation, in Proceedings of IEEE International Conference on Communications, May 2003, pp. 2030– 2034

    Google Scholar 

  429. S. Zhou, G. B. Giannakis, and C. Le Martret, Chip-interleaved block-spread code division multiple access, IEEE Trans. Commun., 50(2):235–248, 2002

    Google Scholar 

  430. M. S. Zimmerman and A. L. Kirsch, The AN/GSC-10 (KATHRYN) variable rate data modem for HF radio, IEEE Trans. Commun. Technol., 15(2):197–204, 1967

    Google Scholar 

  431. T. G. Zimmermann, Wireless networked digital devices: A new paradigm for computing and communication, IBM Syst. J., 38:566–574, 1999

    Google Scholar 

  432. W. M. Zuberek, Flexible circuit simulation with mixed-domain and mixed-mode applications, in Proceedings of IEEE International Symposium on Circuits and Systems, San Diego, USA, May 1992, pp. 81–84

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Specification for a Wireless LAN Terminal. In: Wireless Transceiver Systems Design. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74516-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74516-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74515-2

  • Online ISBN: 978-0-387-74516-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics