Signal Processing Methods for Doppler Radar Heart Rate Monitoring

  • Anders Høst-Madsen
  • Nicolas Petrochilos
  • Olga Boric-Lubecke
  • Victor M. Lubecke
  • Byung-Kwon Park
  • Qin Zhou

A practical means for unobtrusive and ubiquitous detection and monitoring of heart and respiration activity from a distance could be a powerful tool for health care, emergency, and surveillance applications, yet remains a largely unrealized goal. Without the need for contact or subject preparation (special clothing, attachments, etc.), this could better extend health monitoring to the chronically ill in routine life, allow wellness monitoring for a large population without known predisposition for risk or harm, and provide alarm and data in emergencies. Such technology could also be used to detect lost or hidden subjects, to help assess emotional state, and to compliment more cumbersome measurements as pre-screening. Doppler radar remote sensing of vital signs has shown promise to this end, with proof of concept demonstrated for various applications. Unfortunately, this principle has not been developed to the level of practical application, mainly due to a lack of an effective way to isolate desired target motion from interference. However, by leveraging recent advances in signal processing and wireless communications technologies, this technique has the potential to transcend mere novelty and make a profound impact on health and welfare in society.


Heart Rate Variability Multiple Input Multiple Output Independent Component Analysis Blind Source Separation Doppler Radar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boric-Lubecke, O., Ong, P.W., Lubecke, V.M.: 10 GHz Doppler radar sensing of respiration and heart movement. In: Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference, pp. 55–56 (2002)Google Scholar
  2. 2.
    Bracewell, R.: The Fourier Transform and Its Applications, 3rd edn. McGraw-Hill, New York (1999)Google Scholar
  3. 3.
    Chen, K.M., Mirsa, D., Wang, H., Chuang, H.R., Postow, E.: An X-band microwave life detection system. IEEE Transactions on Biomedical Engineering 33, 697–70 (1986)CrossRefGoogle Scholar
  4. 4.
    Comon, P.: Independent component analysis, a new concept? Signal Processing, Special issue on Higher-Order Statistics 36(3), 287–314 (1994)MATHGoogle Scholar
  5. 5.
    Droitcour, A., Boric-Lubecke, O., Lubecke, V.M., Lin, J.: 0.25 μm CMOS and biCMOS single chip direct conversion Doppler radars for remote sensing of vital signs. In: IEEE ISSCC Digest of Technical Papers, pp. 348–349 (2002)Google Scholar
  6. 6.
    Droitcour, A.D., Boric-Lubecke, O., Lubecke, V.M., Lin, J., Kovacs, G.T.A.: Range correlation effect on ISM band I/Q CMOS radar for non-contact sensing of vital signs. In: IEEE MTT-S IMS2003 Digest, vol. 3, pp. 1945–1948 (2003)Google Scholar
  7. 7.
    Droitcour, A.D., Lubecke, V.M., Lin, J., Boric-Lubecke, O.: A microwave radio for Doppler radar sensing of vital signs. In: IEEE MTT-S IMS2001 Digest, vol. 1, pp. 175–178 (2001)Google Scholar
  8. 8.
    Hilton, M.F., Bates, R.A., Godfrey, K.R., et al.: Evaluation of frequency and time-frequency spectral analysis of heart rate variability as a diagnostic marker of the sleep apnea syndrome. Medical and Biological Engineering and Computing 37(6), 760–769 (1999)CrossRefGoogle Scholar
  9. 9.
    Koldovsk, Z., Tichavsk, P., Oja, E.: Dfficient variant of algorithm fastica for independent component analysis attaining the Cramer–Rao lower bound. IEEE Transactions on Neural Networks 17(5), 1265–1277 (2006)CrossRefGoogle Scholar
  10. 10.
    Lin, J.C.: Non-invasive microwave measurement of respiration. Proceedings of IEEE 63, 1530 (1975)CrossRefGoogle Scholar
  11. 11.
    Lin, J.C.: Microwave apexcardiography. IEEE Transactions MTT 27, 618–620 (1979)CrossRefGoogle Scholar
  12. 12.
    Lin, J.C.: Microwave sensing of physiological movement and volume change: A review. Bioelectromagnetics 13, 557–565 (1992)CrossRefGoogle Scholar
  13. 13.
    Lohman, B.B., Boric-Lubecke, O., Lubecke, V.M., Ong, P.W., Sondhi, M.M.: A digital signal processor for Doppler radar sensing of vital signs. In: 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2001)Google Scholar
  14. 14.
    Lubecke, V., Boric-Lubecke, O., Awater, G., Ong, P.W., Gammel, P., Yan, R.H., Lin, J.C.: Remote sensing of vital signs with telecommunications signals. In: World Congress on Medical Physics and Biomedical Engineering (2000)Google Scholar
  15. 15.
    Lubecke, V., Boric-Lubecke, O., Beck, E.: A compact low-cost add-on module for Doppler radar sensing of vital signs using a wireless communications terminal. In: IEEE MTT-S International Microwave Symposium (2002)Google Scholar
  16. 16.
    McSharry, P.E., Clifford, G.D., Tarassenko, L., Smith, L.: A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions Biomedical Engineering 50, 289–294 (2003)CrossRefGoogle Scholar
  17. 17.
    Park, B.K., Vergara, A., Boric-Lubecke, O., Lubecke, V., Høst-Madsen, A.: Center tracking quadrature demodulation for a Doppler radar motion detector. IEEE Transactions on Microwave Theory and Techniques (2007). Submitted. Available at
  18. 18.
    Poor, H.V.: An Introduction to Signal Detection and Estimation. Springer, Berlin Heidelberg New York (1994)MATHGoogle Scholar
  19. 19.
    Thakor, N.V., Zhu, Y.S.: Application of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection. IEEE Transactions on Biomedical Enginering 38, 785–794 (1991)CrossRefGoogle Scholar
  20. 20.
    van der Veen, A.: Analytical method for blind binary signal separation. IEEE Transactions on Signal Processing 45(4), 1078–1082 (1997)CrossRefGoogle Scholar
  21. 21.
    van der Veen, A., Paulraj, A.: An analytical constant modulus algorithm. IEEE Transactions on Signal Processing 44(5), 1136–1155 (1996)CrossRefGoogle Scholar
  22. 22.
    Veeravalli, V., Poor, H.: Quadratic detection of signals with drifting phase. Journal of the Acoustic Society of America 89, 811–819 (1991)CrossRefGoogle Scholar
  23. 23.
    Zhou, Q., Petrochilos, N., Høst-Madsen, A., Boric-Lubecke, O., Lubecke, V.: Detection and monitoring of heartbeat using Doppler radar. IEEE Transactions on Signal Processing (2007). Submitted. Available at

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anders Høst-Madsen
    • 1
  • Nicolas Petrochilos
    • 1
  • Olga Boric-Lubecke
    • 1
  • Victor M. Lubecke
    • 1
  • Byung-Kwon Park
    • 1
  • Qin Zhou
    • 2
  1. 1.University of HawaiiHonoluluUSA
  2. 2.Broadcom Inc.USA

Personalised recommendations