Skip to main content

Hierarchical Filters in a Collaborative Filtering Framework for System Identification and Knowledge Retrieval

  • Chapter
Signal Processing Techniques for Knowledge Extraction and Information Fusion

This chapter provides a critical review of hierarchical filters and the associated adaptive learning algorithms. Hierarchical filters are collaborative adaptive filtering architectures where short-length adaptive transversal filters are combined into layers, which are then combined into a multilayered structures. These structures offer potentially faster speed of convergence compared to the standard finite impulse response (FIR) filters, which is due to the small order of their constituting sub-filters. Several approaches can be used to adapt the coefficients of hierarchical filters. These include the use of the standard least mean square (LMS) algorithm for every sub-filter, via a variant of linear backpropagation, through to using a different algorithm for every layer and every sub-filter within the layer. Unless the input signal is white or the unknown channel is sparse, hierarchical filters converge to biased solutions. We make use of this property to propose a collaborative approach to the identification of sparse channels. The performances of these algorithms are evaluated for a variety of applications, including system identification and sparsity detection. The benefits and limitations of hierarchical adaptive filtering in this context are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balakrishan, J., Sethares, W., Johnson, C.: Approximate channel identification via δ-signed correlation. Int. J. Adapt. Control Signal Proc. 16, 309–323 (2002)

    Article  Google Scholar 

  2. Beaufays, F.: Transform-domain adaptive filters: An analytical approach. IEEE Trans. Signal Proc. 43, 422–431 (1995)

    Article  Google Scholar 

  3. Boukis, C., Mandic, D.: A global gradient descent algorithm for hierarchical FIR adaptive filters. In: International Conference on DSP, pp. 1285–1288 (2002)

    Google Scholar 

  4. Boukis, C., Mandic, D., Constantinides, A.: A hierarchical feedforward adaptive filter for system identification. In: IEEE Workshop on Neural Networks for Signal Processing, pp. 269–278 (2002)

    Google Scholar 

  5. Boukis, C., Polymenakos, L.: Using hierarchical filters to detect sparseness within unknown channels. In: Knowledge-Based Intelligent Information and Engineering Systems, Lecture Notes on Artificial Intelligence, vol. 4253, pp. 1216–1223. Springer (2006)

    Google Scholar 

  6. Burdic, W.: Underwater Systems Analysis. Prentice-Hall, Englewood Cliffs, NJ (1984)

    Google Scholar 

  7. Farhang-Boroujeny, B.: Adaptive Filters: Theory and Applications. Wiley, New York (1998)

    Google Scholar 

  8. Haykin, S.: Neural Networks, A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  9. Kalouptsidis, N.: Signal Processing Systems: Theory and Design. Wiley, New York (1997)

    Google Scholar 

  10. Kautz, W.: Transient synthesis in the time domain. IRE Trans. Circuit Theory CT-1(3), 29–39 (1954)

    Google Scholar 

  11. Macleod, M.: Performance of the hierarchical LMS algorithm. IEEE Commun. Lett. 9(12), 436–437 (2002)

    Google Scholar 

  12. Martin, R., Sethares, W., Williamson, R., Johnson, C.: Exploiting sparsity in adaptive filters. IEEE Trans. Signal Proc. 50(8), 1883–1894 (2002)

    Article  Google Scholar 

  13. Nascimento, V.: Analysis of the hierarchical LMS algorithm. IEEE Signal Proc. Lett. 10(3), 78–81 (2003)

    Article  Google Scholar 

  14. Polycarpou, M., Ioannou, P.: Learning and convergence analysis of neural-type structured networks. IEEE Trans. Signal Proc. 3(1), 39–50 (1992)

    Google Scholar 

  15. Principe, J., de Vries, B., de Oliveira, P.: The gamma filter – a new class of adaptive IIR filters with restricted feedback. IEEE Trans. Signal Proc. 41(2), 649–656 (1993)

    Article  MATH  Google Scholar 

  16. Stoica, P., Agrawal, M., Ahgren, P.: On the hierarchical least-squares algorithm. IEEE Commun. Lett. 6(4), 153–155 (2002)

    Article  Google Scholar 

  17. Wahlberg, B.: System identification using laguerre models. IEEE Trans. Automat. Contr. 36(5), 551–562 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Widrow, B., Stearns, S.: Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  19. Woo, T.K.: Fast hierarchical least mean square algorithm. IEEE Signal Proc. Lett. 8(11), 289–291 (2001)

    Article  Google Scholar 

  20. Woo, T.K.: HRLS: A more efficient RLS algorithm for adaptive FIR filtering. IEEE Signal Proc. Lett. 5(3), 81–84 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boukis, C., Constantinides, A.G. (2008). Hierarchical Filters in a Collaborative Filtering Framework for System Identification and Knowledge Retrieval. In: Mandic, D., Golz, M., Kuh, A., Obradovic, D., Tanaka, T. (eds) Signal Processing Techniques for Knowledge Extraction and Information Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74367-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74367-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74366-0

  • Online ISBN: 978-0-387-74367-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics