Many studies are currently collecting multiple types of imaging data and information from the same participants. Each imaging method reports on a limited domain and is likely to provide some common information and some unique information. This motivates the need for a joint analysis of these data. Most commonly, each type of image is analyzed independently and then perhaps overlaid to demonstrate its relationship with other data types (e.g., structural and functional images). A second approach, called data fusion, utilizes multiple image-types together in order to take advantage of the "cross" information. In the former approach, any cross information is "thrown" away, hence such an approach, for example, would not detect a change in functional magnetic resonance imaging (fMRI) activation maps that are associated with a change in the brain structure while the second approach would be expected to detect such changes.


Gray Matter Independent Component Analysis Independent Component Analysis Joint Component Joint Histogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ardnt, C.: Information gained by data fusion. In: SPIE Proceedings (1996)Google Scholar
  2. 2.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry – the methods. NeuroImage 11, 805–821 (2000)CrossRefGoogle Scholar
  3. 3.
    Basser, P.J.: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 8, 333–344 (1995)CrossRefGoogle Scholar
  4. 4.
    Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994)CrossRefGoogle Scholar
  5. 5.
    Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111, 209–219 (1996)CrossRefGoogle Scholar
  6. 6.
    Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR image segmentation techniques using pattern recognition. [review]. Med. Phys. 20, 1033–1048 (1993)CrossRefGoogle Scholar
  7. 7.
    Bihan, D.L., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986)Google Scholar
  8. 8.
    Calhoun, V.D., Adali, T., Giuliani, N., Pekar, J.J., Pearlson, G.D., Kiehl, K.A.: A method for multimodal analysis of independent source differences in schizophrenia: Combining gray matter structural and auditory oddball functional data. Hum. Brain Map. 27, 47–62 (2006)CrossRefGoogle Scholar
  9. 9.
    Calhoun, V.D., Adali, T., Kiehl, K.A., Astur, R.S., Pekar, J.J., Pearlson, G.D.: A method for multi-task fMRI data fusion applied to schizophrenia. Hum. Brain Map. 27, 598–610 (2006)CrossRefGoogle Scholar
  10. 10.
    Calhoun, V.D., Adali, T., Pearlson, G.D., Kiehl, K.A.: Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data. NeuroImage 30, 544–553 (2006)CrossRefGoogle Scholar
  11. 11.
    Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J.: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum. Brain Map. 13, 43–53 (2001)CrossRefGoogle Scholar
  12. 12.
    Calhoun, V.D., Keihl, K.A., Pearlson, G.D.: A method for multi-task fMRI data fusion applied to schizophrenia. NeuroImage 26 (2005)Google Scholar
  13. 13.
    Calhoun, V.D., Pearlson, G.D., Kiehl, K.A.: Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data. NeuroImage 30, 544–553 (2006)CrossRefGoogle Scholar
  14. 14.
    Calhoun, V.D., Pekar, J.J., McGinty, V.B., Adali, T., Watson, T.D., Pearlson, G.D.: Different activation dynamics in multiple neural systems during simulated driving. Hum. Brain Map. 16, 158–167 (2002)CrossRefGoogle Scholar
  15. 15.
    Cohen, M.S., DuBois, R.M., Zeineh, M.M.: Rapid and effective correction of rf inhomogeneity for high field magnetic resonance imaging. Hum. Brain Map. 10, 204–211 (2000)CrossRefGoogle Scholar
  16. 16.
    Dale, A.M., Halgren, E., Lewine, J.D., Buckner, R.L., Paulson, K., Marinkovic, K., Rosen, B.R.: Spatio-temporal localization of cortical word repetition effects in a size judgement task using combined fMRI/ MEG. NeuroImage 5, 592–592 (1997)Google Scholar
  17. 17.
    Fischl, B., Dale, A.M.: Cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A 97, 11050–11055 (2000)CrossRefGoogle Scholar
  18. 18.
    Fox, P.T.: The growth of human brain mapping. Hum. Brain Map. 5, 1–2 (1997)CrossRefGoogle Scholar
  19. 19.
    Friston, K., Ashburner, J., Frith, C.D., Poline, J.P., Heather, J.D., Frackowiak, R.S.: Spatial registration and normalization of images. Hum. Brain Map. 2, 165–189 (1995)CrossRefGoogle Scholar
  20. 20.
    Friston, K., Jezzard, P., Turner, R.: Analysis of functional MRI time-series. Hum. Brain Map. 10, 153–171 (1994)CrossRefGoogle Scholar
  21. 21.
    Friston, K.J., Harrison, L., Penny, W.: Dynamic causal modelling. NeuroImage 19, 1273–1302 (2003)CrossRefGoogle Scholar
  22. 22.
    George, J.S., Aine, C.J., Mosher, J.C., Schmidt, D.M., Ranken, D.M., Schlitt, H., Wood, C.C., Lewine, J.D., Sanders, J.A., Belliveau, J.W.: Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J. Clin. Neurophysiol. 12, 406–431 (1995)CrossRefGoogle Scholar
  23. 23.
    Gerig, G., Martin, J., Kikinis, R., Kubler, O., Shenton, M., Jolesz, F.: Unsupervised tissue type segmentation of 3D dual-echo MR head data. IVC 10, 349–360 (1992)Google Scholar
  24. 24.
    Giuliani, N., Calhoun, V.D., Pearlson, G.D., Francis, A., Buchanan, R.W.: Voxel-based morphometry versus regions of interest: A comparison of two methods for analyzing gray matter disturbances in schizophrenia. Schizophr. Res. 74, 135–147 (2005)CrossRefGoogle Scholar
  25. 25.
    Hero, A., Ma, B., Michel, O., Gorman, J.: Alpha-divergence for classification, indexing and retrieval. Technical Report 328, Dept. EECS, University of Michigan, Ann Arbor (2001)Google Scholar
  26. 26.
    Horwitz, B., Poeppel, D.: How can EEG/ MEG and fMRI/ PET data be combined? Hum. Brain Map. 17, 1–3 (2002)CrossRefGoogle Scholar
  27. 27.
    Husain, F.T., Nandipati, G., Braun, A.R., Cohen, L.G., Tagamets, M.A., Horwitz, B.: Simulating transcranial magnetic stimulation during PET with a large-scale neural network model of the prefrontal cortex and the visual system. NeuroImage 15, 58–73 (2002)CrossRefGoogle Scholar
  28. 28.
    Hyvärinen, A.: Survey on independent component analysis. Neural Comput. Surveys 2, 94–128 (1999)Google Scholar
  29. 29.
    Johnson, M.R., Morris, N., Astur, R.S., Calhoun, V.D., Kieh, K.A., Pearlson, G.D.: Schizophrenia and working memory: A closer look at fMRI of the dorsolateral prefrontal cortex during a working memory task. In: Proceedings of CNS (2005)Google Scholar
  30. 30.
    Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163–178 (2000)CrossRefGoogle Scholar
  31. 31.
    Jung, T.P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., Sejnowski, T.J.: Analysis and visualization of single-trial event-related potentials. Hum. Brain Map. 14, 333–344 (2001)CrossRefGoogle Scholar
  32. 32.
    Kiehl, K.A., Smith, A.M., Hare, R.D., Liddle, P.F.: An event-related potential investigation of response inhibition in schizophrenia and psychopathy. Biol. Psychiat. 48, 210–221 (2000)CrossRefGoogle Scholar
  33. 33.
    Kiehl, K.A., Stevens, M., Laurens, K.R., Pearlson, G.D., Calhoun, V.D., Liddle, P.F.: An adaptive reflexive processing model of neurocognitive function: Supporting evidence from a large scale (n = 100) fMRI study of an auditory oddball task. NeuroImage 25, 899–915 (2005)CrossRefGoogle Scholar
  34. 34.
    Kim, D.S., Ronen, I., Formisano, E., Kim, K.H., Kim, M., van Zijl, P., Ugurbil, K., Mori, S., Goebel, R.: Simultaneous mapping of functional maps and axonal connectivity in cat visual cortex. In: Proceedings of HBM, Sendai, Japan (2003)Google Scholar
  35. 35.
    Lange, N., Strother, S.C., Anderson, J.R., Nielsen, F.A., Holmes, A.P., Kolenda, T., Savoy, R., Hansen, L.K.: Plurality and resemblance in fmri data analysis. NeuroImage 10, 282–303 (1999)CrossRefGoogle Scholar
  36. 36.
    Liu, J., Calhoun, V.D.: Parallel independent component analysis for multimodal analysis: Application to fMRI and EEG data. In: Proceedings of ISBI (2007)Google Scholar
  37. 37.
    Liu, J., Pearlson, G.D., Windemuth, A., Ruano, G., Perrone-Bizzozero, N.I., Calhoun, V.D.: Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA, Hum. Brain Map., In PressGoogle Scholar
  38. 38.
    Makeig, S., Jung, T.P., Bell, A.J., Ghahremani, D., Sejnowski, T.J.: Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. 94, 10,979–10,984 (1997)CrossRefGoogle Scholar
  39. 39.
    McIntosh, A.R., Bookstein, F.L., Haxby, J.V., Grady, C.L.: Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3, 143–157 (1996)CrossRefGoogle Scholar
  40. 40.
    McIntosh, A.R., Gonzalez-Lima, F.: Structural equation modeling and its application to network analysis in functional brain imaging. Hum. Brain Map. 2, 2–22 (1994)CrossRefGoogle Scholar
  41. 41.
    McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J., Sejnowski, T.J.: Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Map. 6, 160–188 (1998)CrossRefGoogle Scholar
  42. 42.
    Mechelli, A., Price, C.J., Noppeney, U., Friston, K.J.: A dynamic causal modeling study on category effects: Bottom-up or top-down mediation? J. Cogn. Neurosci. 15, 925–934 (2003)CrossRefGoogle Scholar
  43. 43.
    Miller, M.I., Trouve, A., Younes, L.: Euler–Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng 4, 375–405 (2002)CrossRefGoogle Scholar
  44. 44.
    van de Moortele, P.F., Cerf, B., Lobel, E., Paradis, A.L., Faurion, A., Bihan, D.L.: Latencies in fmri time-series: Effect of slice acquisition order and perception. NMR Biomed. 10, 230–236 (1997)CrossRefGoogle Scholar
  45. 45.
    Pajevic, S., Pierpaoli, C.: Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain. Magn. Reson. Med. 42, 526–540 (1999)CrossRefGoogle Scholar
  46. 46.
    Ramnani, N., Lee, L., Mechelli, A., Phillips, C., Roebroeck, A., Formisano, E.: Exploring brain connectivity: A new frontier in systems neuroscience. functional brain connectivity. In: Trends Neurosci., vol. 25, pp. 496–497. Dusseldorf, Germany (2002)Google Scholar
  47. 47.
    Savopol, F., Armenakis, C.: Mergine of heterogeneous data for emergency mapping: Data integration or data fusion? In: Proceedings of ISPRS (2002)Google Scholar
  48. 48.
    Thomsen, T., Specht, K., Hammar, A., Nyttingnes, J., Ersland, L., Hugdahl, K.: Brain localization of attentional control in different age groups by combining functional and structural MRI. NeuroImage 22, 912–919 (2004)CrossRefGoogle Scholar
  49. 49.
    Vitacco, D., Brandeis, D., Pascual-Marqui, R., Martin, E.: Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum. Brain Map. 17, 4–12 (2002)CrossRefGoogle Scholar
  50. 50.
    Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, template moderated, spatially varying statistical classification. Med. Image Anal. 4, 43–55 (2000)CrossRefGoogle Scholar
  51. 51.
    Wells, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A.: Adaptive segmentation of mri data. IEEE Trans. Med. Imag. 20, 429–442 (1996)CrossRefGoogle Scholar
  52. 52.
    Worsley, K.J., Andermann, M., Koulis, T., MacDonald, D., Evans, A.C.: Detecting changes in nonisotropic images. Hum. Brain Map. 8, 98–101 (1999)CrossRefGoogle Scholar
  53. 53.
    Worsley, K.J., Cao, J., Paus, T., Petrides, M., Evans, A.C.: Applications of random field theory to functional connectivity. Hum. Brain Map. 6, 364–367 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vince D. Calhoun
    • 1
  • Tülay Adali
    • 2
  1. 1.University of New MexicoAlbuquerqueUSA
  2. 2.University of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations