Ceramic Matrix Composites



Ceramic materials in general have a very attractive package of properties: high strength and high stiffness at very high temperatures, chemical inertness, low density, and so on. This attractive package is marred by one deadly flaw, namely, an utter lack of toughness. They are prone to catastrophic failures in the presence of flaws (surface or internal). They are extremely susceptible to thermal shock and are easily damaged during fabrication and/or service. It is therefore understandable that an overriding consideration in ceramic matrix composites (CMCs) is to toughen the ceramics by incorporating fibers in them and thus exploit the attractive high-temperature strength and environmental resistance of ceramic materials without risking a catastrophic failure. It is worth pointing out at the very outset that there are certain basic differences between CMCs and other composites. The general philosophy in nonceramic matrix composites is to have the fiber bear a greater proportion of the applied load. This load partitioning depends on the ratio of fiber and matrix elastic moduli, Ef/Em. In nonceramic matrix composites, this ratio can be very high, while in CMCs, it is rather low and can be as low as unity; think of alumina fiber reinforced alumina matrix composite. Another distinctive point regarding CMCs is that because of limited matrix ductility and generally high fabrication temperature, thermal mismatch between components has a very important bearing on CMC performance. The problem of chemical compatibility between components in CMCs has ramifications similar to those in, say, MMCs. We first describe some of the processing techniques for CMCs, followed by a description of some salient characteristics of CMCs regarding interface and mechanical properties and, in particular, the various possible toughness mechanisms, and finally a description of some applications of CMCs.


Thermal Shock Resistance Ceramic Matrix Ceramic Matrix Composite Fiber Pullout Crack Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aveston J, Cooper GA, Kelly A (1971) In: The properties of fibre composites. IPC Science & Technology, Guildford, p 15Google Scholar
  2. Barclay SJ, Fox JR, Bowen HK (1987) J Mater Sci 22:4403CrossRefGoogle Scholar
  3. Becher PF, Wei GC (1984) Commun Am Ceram Soc 67:259CrossRefGoogle Scholar
  4. Beier W, Markmann S (1997) Adv Mater Processes 152:37Google Scholar
  5. Bhatt RT (1986) NASA TN-88814Google Scholar
  6. Bhatt RT (1990) J Mater Sci 25:3401CrossRefGoogle Scholar
  7. Boccaccini AR, Pearce DH, Janczak J, Beier W, Ponton CB (1997a) Mater Sci Technol 13:852CrossRefGoogle Scholar
  8. Boccaccini AR, Ponton CB, Chawla KK (1997b) Mater Sci Eng A241:142Google Scholar
  9. Bordia RK, Raj R (1988) J Am Ceram Soc 71:302CrossRefGoogle Scholar
  10. Brennan JJ, Prewo KM (1982) J Mater Sci 17:2371CrossRefGoogle Scholar
  11. Burkland CV, Bustamante WE, Klacka R, Yang J-M (1988) In: Whisker- and fiber-toughened ceramics. ASM Intl, Materials Park, OH, p 225Google Scholar
  12. Carter WC, Butler EP, Fuller ER Jr (1991) Scripta Metall Mater 25:579–584CrossRefGoogle Scholar
  13. Chawla KK (2003) Ceramic matrix composites, 2nd edn. Kluwer Acad. Pub, Boston, MACrossRefGoogle Scholar
  14. Chawla KK, Ferber MK, Xu ZR, Venkatesh R (1993a) Mater Sci Eng A162:35–44CrossRefGoogle Scholar
  15. Chawla KK, Xu ZR, Hlinak A, Chung Y-W (1993b) In: Advances in ceramic-matrix composites. Am. Ceram. Soc, Westerville, OH, pp 725–736Google Scholar
  16. Chawla N, Liaw PK, Lara-Curzio E, Lowden RA, Ferber MK (1994) In: High performance composites: commonalty of phenomena. The Minerals, Metals & Materials Society, Warrendale, PA, p 291Google Scholar
  17. Chawla KK, Coffin C, Xu ZR (2000) Intl Mater Rev 45:165Google Scholar
  18. Chokshi AH, Porter JR (1985) J Am Ceram Soc 68:c144CrossRefGoogle Scholar
  19. Claussen N, Le T, Wu S (1989) J Eur Ceram Soc 5:29CrossRefGoogle Scholar
  20. Claussen N, Wu S, Holtz D (1994) J Eur Ceram Soc 14:209CrossRefGoogle Scholar
  21. Cook J, Gordon JE (1964) Proc R Soc Lond A228:508CrossRefGoogle Scholar
  22. Cornie JA, Chiang Y-M, Uhlmann DR, Mortensen A, Collins JM (1986) Am Ceram Soc Bull 65:293Google Scholar
  23. Davidge RW (1979) Mechanical behavior of ceramics. Cambridge University Press, Cambridge, p 116Google Scholar
  24. De Jonghe LC, Rahaman MN, Hseuh CH (1986) Acta Metall 39:1467CrossRefGoogle Scholar
  25. DiCarlo JA (1985) J Met 37:44Google Scholar
  26. Evans AG (1985) Mater Sci Eng 71:3CrossRefGoogle Scholar
  27. Evans AG, Marshall DB (1989) Acta Metall 37:2567CrossRefGoogle Scholar
  28. Fitzer E, Gadow R (1986) Am Ceram Soc Bull 65:326Google Scholar
  29. Fitzer E, Hegen D (1979) Angew Chem 91:316CrossRefGoogle Scholar
  30. Fitzer E, Schlichting J (1980) Z Werkstofftech 11:330CrossRefGoogle Scholar
  31. French JE (1996) In: Handbook of continuous fiber ceramic composites. Amer. Ceramic Soc, Westerville, OH, p 269Google Scholar
  32. Greil P (1995) J Am Ceram Soc 78:835CrossRefGoogle Scholar
  33. Gupta V (1991) MRS Bull XVI-4:39CrossRefGoogle Scholar
  34. Gupta V, Yuan J, Martinez D (1993) J Am Ceram Soc 76:305CrossRefGoogle Scholar
  35. Gladysz GM, Chawla KK (2001) Composities A 32:173Google Scholar
  36. Gladysz GM, Schmücker M, Chawla KK, Schneider H, Joslin DL, Ferber MK (1999) Journal of Mater Sci 34:4351Google Scholar
  37. He MY, Hutchinson JW (1989) J Appl Mech 56:270CrossRefGoogle Scholar
  38. Herron M, Risbud SH (1986) Am Ceram Soc Bull 65:342Google Scholar
  39. Hillig WB (1988) J Am Ceram Soc 71:C-96CrossRefGoogle Scholar
  40. Homeny J, Vaughn WL, Ferber MK (1987) Am Ceram Soc Bull 67:333Google Scholar
  41. Hurwitz FI (1992) NASA Tech Memo, 105754Google Scholar
  42. Hurwitz FI, Gyekenyesi JZ, Conroy PJ (1989) Ceram Eng Sci Proc 10:750CrossRefGoogle Scholar
  43. Hutchinson JW, Jensen HM (1990) Mech Mater 9:139–163CrossRefGoogle Scholar
  44. Illston TJ, Ponton CB, Marquis PM, Butler EG (1993) Manufacture of doped glasses using electrophoretic deposition. In: Duran P, Fernandez JF (eds) Third euroceramics, vol 1. Faenza Editirice Iberica, Madrid, p 419Google Scholar
  45. Jero PD (1990) Am Ceram Soc Bull 69:484Google Scholar
  46. Jero PD, Kerans RJ (1990) Scripta Metall 24:2315–2318CrossRefGoogle Scholar
  47. Jero PD, Kerans RJ, Parthasarathy TA (1991) J Am Ceram Soc 74:2793–2801CrossRefGoogle Scholar
  48. Kaya C, Boccaccini AR, Chawla KK (2000) J Am Ceram Soc 83:1885Google Scholar
  49. Kaya C, Kaya F, Butler EG, Boccaccini AR, Chawla KK (2009) J Eur Ceram Soc 29:1631CrossRefGoogle Scholar
  50. Kellett B, Lange FF (1989) J Am Ceram Soc 67:369CrossRefGoogle Scholar
  51. Kerans RJ, Parthasarathy TA (1991) J Am Ceram Soc 74:1585–1596CrossRefGoogle Scholar
  52. Kristofferson A, Warren A, Brandt J, Lundberg R (1993) In: Naslain R et al (eds) Proc. Int. Conf. HTCMC-1. Woodhead Pub., Cambridge, p 151Google Scholar
  53. Kriven WM (1995) J Phys (France) 5:C8–C101Google Scholar
  54. Kriven WM, Lee SJ (1998) Ceram Eng Sci Proc 19:305CrossRefGoogle Scholar
  55. Liu HY, Claussen N, Hoffmann MJ, Petzow G (1991) J Eur Ceram Soc 7:41CrossRefGoogle Scholar
  56. Mackin TJ, Warren PD, Evans AG (1992) Acta Metall Mater 40:1251–1257CrossRefGoogle Scholar
  57. Mumm DR, Faber KT (1992) Ceram Eng Sci Proc 7–8:70–77Google Scholar
  58. Nourbakhsh S, Liang FL, Margolin H (1990) Metall Trans A 21A:213CrossRefGoogle Scholar
  59. Nourbakhsh S, Margolin H (1990) Metall Trans A 20A:2159Google Scholar
  60. Phillips DC (1983a) Fabrication of composites. North-Holland, Amsterdam, p 373Google Scholar
  61. Phillips DC, Sambell RAJ, Bowen DH (1972) J Mater Sci 7:1454CrossRefGoogle Scholar
  62. Prewo KM (1982) J Mater Sci 17:3549CrossRefGoogle Scholar
  63. Prewo KM (1986) Tailoring multiphase and composite ceramics, vol 20, Materials science research. Plenum, New York, p 529CrossRefGoogle Scholar
  64. Prewo KM, Brennan JJ (1980) J Mater Sci 15:463CrossRefGoogle Scholar
  65. Prewo KM, Brennan JJ, Layden GK (1986) Am Ceram Soc Bull 65:305Google Scholar
  66. Rahaman MN, De Jonghe LC (1987) J Am Ceram Soc 70:C-348CrossRefGoogle Scholar
  67. Raj R, Bordia RK (1989) Acta Metall 32:1003CrossRefGoogle Scholar
  68. Ruhle M, Evans AG (1988) Mater Sci Eng A107:187Google Scholar
  69. Sacks MD, Lee HW, Rojas OE (1987) J Am Ceram Soc 70:C-348Google Scholar
  70. Sambell RAJ, Bowen DH, Phillips DC (1972) J Mater Sci 7:773CrossRefGoogle Scholar
  71. Sambell RAJ, Phillips DC, Bowen DH (1974) Carbon fibres: their place in modern technology. The Plastics Institute, London, p 16/9Google Scholar
  72. Schioler LJ, Stiglich JJ (1986) Am Ceram Soc Bull 65:289Google Scholar
  73. Schneider H, Komarneni S (2005) Mullite. Wiley-VCH, New York, 509 ppCrossRefGoogle Scholar
  74. Shalek PD, Petrovic JJ, Hurley GF, Gac FD (1986) Am Ceram Soc Bull 65:351Google Scholar
  75. Sorensen BF (1993) Scripta Metall Mater 28:435–439CrossRefGoogle Scholar
  76. Stinton DP, Caputo AJ, Lowden RA (1986) Am Ceram Soc Bull 65:347Google Scholar
  77. Tiegs TN, Becher PF (1986) Tailoring multiphase and composite ceramics. Plenum, New York, p 639CrossRefGoogle Scholar
  78. Urquhart AW (1991) Mater Sci Eng A144:75CrossRefGoogle Scholar
  79. Venkatesh R, Chawla KK (1992) J Mater Sci Lett 11:650–652Google Scholar
  80. Wei GC, Becher PF (1984) Am Ceram Soc Bull 64:298Google Scholar
  81. Wu S, Claussen N (1994) J Am Ceram Soc 77:2898CrossRefGoogle Scholar
  82. Yang M, Stevens R (1990) J Mater Sci 25:4658CrossRefGoogle Scholar
  83. Zhu D, Kriven WM (1996) Ceram Eng Sci Proc 17:383CrossRefGoogle Scholar

Further Reading

  1. Chawla KK (1998) Ceramic matrix composites, 2nd edn. Kluwer, BostonGoogle Scholar
  2. Colombo P, Riedel R, Sorarù GD, Kleebe H-J (eds) (2009) Polymer derived ceramics. Destech, Lancaster, PAGoogle Scholar
  3. Faber KT (1997) Annu Rev Mater Res 27:499Google Scholar
  4. Krenkel W (ed) (2008) Ceramic matrix composite. Wiley-VCH, WeinheimGoogle Scholar
  5. Phillips DC (1983b) Fiber reinforced ceramics. In: Kelly A, Mileiko ST (eds) Fabrication of ceramics, vol 4 of Handbook of composites. North-Holland, Amsterdam, p 373Google Scholar
  6. Warren R (ed) (1991) Ceramic matrix composites. Blackie & Sons, GlasgowGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations