Advertisement

Metal Matrix Composites

  • Krishan K. Chawla
Chapter

Abstract

Metal matrix composites consist of a metal or an alloy as the continuous matrix and a reinforcement that can be particle, short fiber or whisker, or continuous fiber. In this chapter, we first describe important techniques to process metal matrix composites, then we describe the interface region and its characteristics, properties of different metal matrix composites, and finally, we summarize different applications of metal matrix composites.

Keywords

Metal Matrix Composite Molten Aluminum Continuous Fiber Thermal Mismatch Ceramic Reinforcement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aghajanian MK, Burke JT, White DR, Nagelberg AS (1989) SAMPE Quart 34:817–823Google Scholar
  2. Arsenault RJ, Fisher RM (1983) Scr Mater 17:67Google Scholar
  3. Arsenault RJ, Shi N (1986) Mater Sci Eng 81:175CrossRefGoogle Scholar
  4. Baker AA, Shipman C (1972) Fibre Sci Technol 5:282Google Scholar
  5. Balch DK, Fitzgerald TJ, Michaud VJ, Mortensen A, Shen Y-L, Suresh S (1996) Metall Mater Trans A 27A:3700CrossRefGoogle Scholar
  6. Barrera EV, Sims J, Callahan DL, Provenzano VJ, Milliken J, Holtz RL (1994) J Mater Res 9:2662CrossRefGoogle Scholar
  7. Beck Tan NC, Aikiri, Jr. RM, Briber RM (1994) Met Mater Trans 25A:2461Google Scholar
  8. Champion AR, Krueger WH, Hartman HS, Dhingra AK (1978). In: Proceedings of International Conference on Composite Materials (ICCM/2). TMS-AIME, New York, p 883Google Scholar
  9. Chawla KK (1973a) Metallography 6:155CrossRefGoogle Scholar
  10. Chawla KK (1973b) Philos Mag 28:401CrossRefGoogle Scholar
  11. Chawla KK (1974) In: Grain boundaries in engineering materials. Claitor’s, Baton Rouge, p 435Google Scholar
  12. Chawla KK (1975) Fibre Sci Technol 8:49CrossRefGoogle Scholar
  13. Chawla KK (Dec., 1985) J Metals 37:25Google Scholar
  14. Chawla KK (1989) In: Precious and rare metal technologies. Elsevier, Amsterdam, p 639Google Scholar
  15. Chawla KK, Collares CE (1978). In: Proceedings of the 1978 International Conference on Composite Materials (ICCM/2), TMS-AIME, New York, p 1237Google Scholar
  16. Chawla KK, Metzger M (1972) J Mater Sci 7:34CrossRefGoogle Scholar
  17. Chawla KK, Metzger M (1978) In: Fracture 1977. In: Proceedings of the 4th international conference on fracture, vol 3, Pergamon Press, p 1039Google Scholar
  18. Chawla KK, Esmaeili AH, Datye AK, Vasudevan AK (1991) Scr Mater et Mater 25:1315CrossRefGoogle Scholar
  19. Chawla N, Andres C, Jones JW, Allison JE (1998) Metall Mater Trans 29A:2843CrossRefGoogle Scholar
  20. Christman T, Suresh S (1988) Mater Sci Eng A102:211CrossRefGoogle Scholar
  21. Christodolou L, Parrish PA, Crowe CR (1988) In: Mater Res Soc Symp Proc 120:29–34CrossRefGoogle Scholar
  22. Cline HE, Walter JL, Koch EF, Osika LM (1971) Acta Mater 19:405CrossRefGoogle Scholar
  23. Cook AJ, Warner PS (1991) Mater Sci Eng A144:189CrossRefGoogle Scholar
  24. Cornie JA, Chiang Y-M, Uhlmann DR, Mortensen AS, Collins JM (1986) Ceram Bull 65:293Google Scholar
  25. Divecha AP, Fishman SG, Karmarkar SD (Sept., 1981) J Metals 9:12Google Scholar
  26. Donomoto T, Miura N, Funatani K, and Miyake N (1983). SAE Techical Paper No. 83052, Detroit, MIGoogle Scholar
  27. Dunand DC, Mortensen A (1991a) Acta Metall Mater 39:127CrossRefGoogle Scholar
  28. Dunand DC, Mortensen A (1991b) Acta Metall Mater 39:1405CrossRefGoogle Scholar
  29. Dutta I, Bourell DL (1988) Mater Sci Eng A112:67Google Scholar
  30. Dutta I, Bourell DL (1990) Acta Metall 38:2041CrossRefGoogle Scholar
  31. Dutta I, Bourell DL, Latimer D (1988) J Compos Mater 22:829CrossRefGoogle Scholar
  32. Fu L-J, Schmerling M, Marcus HL (1986) In: Composite materials: fatigue and fracture, ASTM STP 907. ASTM, Philadelphia, 51Google Scholar
  33. Fujiwara C, Yoshida M, Matsuhama M, Ohama S (1995). In: Proceedings of International Conference on Composite Materials (ICCM-10), p II–687.Google Scholar
  34. Gabryel CM, McLeod AD (1991) Metall Trans 23A:1279Google Scholar
  35. Ghosh AK (1993) In: Metal matrix composites. Butterworth-Heinemann, Boston, p 119Google Scholar
  36. Hill RG, Nelson RP, Hellerich CL (1969). In: Proceedings of the 16th refractory working group meeting, Seattle, WAGoogle Scholar
  37. Hunt WH, Osman TM, Lewandowski JJ (1993) JOM 45:30Google Scholar
  38. Isaacs JA, Taricco F, Michaud VJ, Mortensen A (1991) Metall Trans 22A:2855CrossRefGoogle Scholar
  39. Jones C, Kiely CJ, Wang SS (1993) J Mater Res 4:327CrossRefGoogle Scholar
  40. Katzman HA (1987) J Mater Sci 22:144CrossRefGoogle Scholar
  41. Kerans RJ, Parthasarathy TA (1991) J Am Ceram Soc 74:1585CrossRefGoogle Scholar
  42. Kohyama A, Igata N, Imai Y, Teranishi H, Ishikawa T (1985). In: Proceedings of the fifth International Conference on Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA, p 609Google Scholar
  43. Lloyd DJ (1994) Int Mater Rev 39:1CrossRefGoogle Scholar
  44. Majidi AP, Chou TW (1987) Proc Int Conf Compos Mater VI 2:422Google Scholar
  45. Manning C, Gurganus T (1969) J Am Ceram Soc 52:115CrossRefGoogle Scholar
  46. Manoharan M, Lewandowski JJ, Hunt WH (1993) Mater Sci Eng A17:63CrossRefGoogle Scholar
  47. McDanels DL (1985) Metall Trans 16A:1105CrossRefGoogle Scholar
  48. McLean M (1983) Directionally solidified materials for high temperature service. The Metals Soc, LondonGoogle Scholar
  49. Mehrabian R, Riek RG, Flemings MC (1974) Metall Trans 5:1899CrossRefGoogle Scholar
  50. Meyerer W, Kizer D, Paprocki S, Paul H (1978). In: Proceedings of the 1978 International Conference on Composite Materials (ICCM/2), TMS-AIME, New York, p 141Google Scholar
  51. Meyers MA, Chawla KK (1984) Mechanical metallurgy. Prentice-Hall, Englewood Cliffs, 494Google Scholar
  52. Michaud VJ (1993) Metal matrix composites. Butterworth-Heinemann, Boston, p 3Google Scholar
  53. Mitra R, Chiou WA, Fine ME, Weertman JR (1993) J Mater Res 8:2300Google Scholar
  54. Mortensen A, Gungor MN, Cornie JA, Flemings MC (1986) J Metals 38:30Google Scholar
  55. Mortensen A, Cornie JA, Flemings MC (1988) J Metals 40:12Google Scholar
  56. Nardone VC, Prewo KM (1986) Scr Mater 20:43Google Scholar
  57. Naslain R, Thebault J, Pailler R (1976). In: Proceedings of the 1975 International Conference on Composite Materials, vol 1, TMS-AIME, New York, p 116Google Scholar
  58. Nieh TG, Karlak RF (1984) Scr Mater 17:67Google Scholar
  59. Nishida Y (2001) Adv Eng Mater 3:315CrossRefGoogle Scholar
  60. Nourbakhsh S, Liang FL, Margolin H (1990) Metall Trans A 21A:213CrossRefGoogle Scholar
  61. Parrini L, Schaler R (1994) J Alloy Comp 211:402CrossRefGoogle Scholar
  62. Partridge PG, Ward-Close CM (1993) Int Mater Rev 38:1CrossRefGoogle Scholar
  63. Pennander L, Anderson C-H (1991) In: Hansen N et al. (eds) Metal matrix composites – Processing, microstructure and properties. 12th Risø international symposium on materials science, p 575Google Scholar
  64. Pfeifer M, Rigsbee JM, Chawla KK (1990) J Mater Sci 25:1563CrossRefGoogle Scholar
  65. Phillips WL (1978). In: Proceedings of the 1978 International Conference on Composite Materials (ICCM/2), TMS-AIME, New York, p 567Google Scholar
  66. Rack HJ (1987). In: Sixth International Conference on Composite Materials, Elsevier Applied Science, New York, p 382Google Scholar
  67. Rezai-Aria F, Liechti T, Gagnon G (1993) Scr Metall Mater 28:587CrossRefGoogle Scholar
  68. Rhee S (1970) J Am Ceram Soc 53:386CrossRefGoogle Scholar
  69. Rohatgi PK, Asthana R, Das S (1986) Int Met Rev 31:115CrossRefGoogle Scholar
  70. Schuster DM, Skibo MD, Bruski RS (1993) J Miner Met Mater Soc 45(5):26CrossRefGoogle Scholar
  71. Shen Y-L, Needleman A, Suresh S (1994) Metall Mater Trans A 25A:839CrossRefGoogle Scholar
  72. Sherby O, Lee S, Koch R, Sumi T, Wolfenstine J (1985) Mater Manuf Process 5:363CrossRefGoogle Scholar
  73. Shi N, Arsenault RJ (1991) J Compos Technol Res 13:211CrossRefGoogle Scholar
  74. Shi N, Arsenault RJ (1993) Metall Trans 24A:1879CrossRefGoogle Scholar
  75. Srivatsan TS, Lavernia EJ (1992) J Mater Sci 27:5965CrossRefGoogle Scholar
  76. Suresh S, Chawla KK (1993) In: Metal matrix composites. Butterworth-Heinemann, Boston, p 119Google Scholar
  77. Thomas DG (1965) J Colloid Sci 20:267CrossRefGoogle Scholar
  78. Vaidya RU, Chawla KK (1994) Compos Sci Technol 50:13CrossRefGoogle Scholar
  79. van Suchtelan J (1972) Philips Res Rep 27:28Google Scholar
  80. van Suchtelen J (1972) Philips Res Rep 27:28Google Scholar
  81. Vasudevan AK, Doherty RD (eds) (1989) Aluminum alloys – Contemporary research and applications. Academic, BostonGoogle Scholar
  82. Vasudevan AK, Petrovic JJ (eds) (1992) High temperature structural silicides, Elsevier, AmsterdamGoogle Scholar
  83. Walter JL (1982) In situ composites IV. Elsevier, New York, p 85Google Scholar
  84. Warren R, Andersson C-H (1984) Composites 15:101CrossRefGoogle Scholar
  85. Williams DR, Fine ME (1985a). In: Proceedings of the 5th International Conference on Composite Materials (ICCM/V), TMS, Warrendale, PA, p 275Google Scholar
  86. Williams DR, Fine ME (1985b). In: Proceedings of the Fifth International Conference on Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA, p 369Google Scholar

Further Reading

  1. Chawla N, Chawla KK (2006) Metal matrix composites. Springer, New YorkCrossRefGoogle Scholar
  2. Clyne TW, Withers PJ (1993) An introduction to metal matrix composites. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Mortensen A, Llorca J (2010) Annu Rev Mater Res 40:243CrossRefGoogle Scholar
  4. Suresh S, Needleman A, Mortensen A (eds) (1993) Metal matrix composites. Butterworth-Heinemann, BostonGoogle Scholar
  5. Taya M, Arsenault RJ (1990) Metal matrix composites. Pergamon, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations