Polymer Matrix Composites



Polymer matrix composites (PMCs) have established themselves as engineering structural materials, not just as laboratory curiosities or cheap stuff for making chairs and tables. This came about not only because of the introduction of high-performance fibers such as carbon, boron, and aramid but also because of some new and improved matrix materials (see Chap. 3). Nevertheless, glass fiber reinforced polymers represent the largest class of PMCs. Carbon fiber reinforced PMCs are perhaps the most important structural composites; especially in the aerospace field. In this chapter, we discuss polymer composite systems containing glass, aramid, polyethylene, boron, and carbon fibers.


Carbon Fiber Wind Turbine Rotor Blade Polymer Matrix Composite Aramid Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allred RE, Newmeister GC, Doak TJ, Cochran RC, Coons AB (1997). In: Composites ’97 Manufacturing and Tooling, Paper #EM97-110, Society of Manufacturing Engineering. Dearborn, MIGoogle Scholar
  2. Anderson BW (1984) In: Advances in fracture research, ICF4, vol 1, New Delhi, Pergamon Press, Oxford, p 607Google Scholar
  3. Baker A (1983) Met Forum 6:81Google Scholar
  4. Bergmann HW (1984) In: Advances in fracture research, ICF4, vol 1, New Delhi, Pergamon Press, Oxford, p 569Google Scholar
  5. Biro DA, Pleizier G, Deslandes Y (1992) J Mater Sci Lett 11:698CrossRefGoogle Scholar
  6. Brøndsted P, Lilholt H, Lystrup A (2005) Annu Rev Mater Res 35:505CrossRefGoogle Scholar
  7. Brown JR, Chappell PJC, Mathys Z (1992) J Mater Sci 27:3167CrossRefGoogle Scholar
  8. Chen CH, Springer GS (1976) J Composite Mater 10:2CrossRefGoogle Scholar
  9. Clark D, Wadsworth NJ, Watt W (1974) In: Carbon fibres, their place in modern technology. The Plastics Institute, London, p 44Google Scholar
  10. Cogswell FN (1992) Thermoplastic aromatic polymer composites. Butterworth-Heinemann, Oxford, p 136CrossRefGoogle Scholar
  11. Collings TA, Stone DEW (1985) Composites 16:307CrossRefGoogle Scholar
  12. Diefendorf RJ (1985) In: Tough composite materials. Noyes Publishing, Park Ridge, NJ, p 191Google Scholar
  13. Donnet J-B, Bansal RC (1984) Carbon fibers. Marcel Dekker, New York, p 109Google Scholar
  14. Drzal LT, Rich MJ, Lloyd PF (1983a) J Adhes 16:1CrossRefGoogle Scholar
  15. Drzal LT, Rich MJ, Koenig MF, Lloyd PF (1983b) J Adhes 16:133CrossRefGoogle Scholar
  16. Ehlert GJ, Lin Y, Galan U, Sodano HA (2010) J Solid Mech Mater Eng 4:1687CrossRefGoogle Scholar
  17. Ehrburger P, Donnet JB (1980a) Philos Trans R Soc Lond A294:495CrossRefGoogle Scholar
  18. Eriksen RH (1976) Composites 7:189CrossRefGoogle Scholar
  19. Friedrich K (1985) Compos Sci Technol 22:43CrossRefGoogle Scholar
  20. Goel A, Chawla KK, Vaidya UK, Koopman M (2008) J Mater Sci 43:4423CrossRefGoogle Scholar
  21. Hancox NL (1983) In: Fabrication of composite materials. North-Holland, Amsterdam, p 1Google Scholar
  22. Hild DN, Schwartz P (1992a) J Adhes Sci Technol 6:879CrossRefGoogle Scholar
  23. Hild DN, Schwartz P (1992b) J Adhes Sci Technol 6:897CrossRefGoogle Scholar
  24. Hull D (1981) An introduction to composite materials. Cambridge University Press, Cambridge, p 42Google Scholar
  25. Hull D (1994) Mater Sci Eng A184:173CrossRefGoogle Scholar
  26. Ishida H, Koenig JL (1978) J Colloid Interface Sci 64:555CrossRefGoogle Scholar
  27. Jangehud I, Serrano AM, Eby RK, Meador MA (1993) In: Proc. 21st biennial conference on carbon, Buffalo, NY, June 13–18Google Scholar
  28. Kaas RL, Kardos JL (1971) Polym Eng Sci 11:11CrossRefGoogle Scholar
  29. Kaplan SL, Rose PW, Nguyen HX, Chang HW (1988) SAMPE Quart 19:55Google Scholar
  30. Kardos JL (1985) In: Molecular characterization of composite interfaces. Plenum, New York, p 1Google Scholar
  31. Knox CE (1982) In: Handbook of composite materials. Van Nostrand Reinhold, New York, p 136CrossRefGoogle Scholar
  32. Krause W, Henning F, Troster S, Geiger O, Eyerer P (2003) J Thermoplastic Compos Mater 16:292CrossRefGoogle Scholar
  33. Li ZF, Netravali AN, Sachse W (1992) J Mater Sci 27:4625CrossRefGoogle Scholar
  34. Lockwood RJ, Alberino LM (1981) In: Advances in urethane science and technology. Technomic, Westport, CTGoogle Scholar
  35. J.A. Manson (1994). In: High performance composite: commonalty of phenomena, Chawla KK, Liaw PK, and Fishman SG (eds) The Minerals, Metals & Materials Society, Warrendale, PA, p 1Google Scholar
  36. Mayer NJ (1974) Engineering applications of composites. Academic, New York, p 24Google Scholar
  37. McKee D, Mimeault V (1973) In: Chemistry and physics of carbon, vol 8. Marcel Dekker, New York, p 151Google Scholar
  38. Meyer RW (1985) Handbook of pultrusion technology. Chapman & Hall, New YorkGoogle Scholar
  39. NASA (1980) Risk to the public from carbon fibers released in civil aircraft accidents, SP-448. NASA, Washington, DCGoogle Scholar
  40. Pickering SJ (2006) Compos A Appl Sci Manuf 37:1206CrossRefGoogle Scholar
  41. Pipes RB, Pagano NJ (1970) J Compos Mater 1:538Google Scholar
  42. Plueddemann EP (1974a) In: Interfaces in polymer matrix composites. Academic, New York, p 174Google Scholar
  43. Riggs DM, Shuford RJ, Lewis RW (1982) Handbook of composites. Van Nostrand Reinhold, New York, p 196CrossRefGoogle Scholar
  44. Sands JM, Fink BK, McKnight SH, Newton CH, Gillespie JW Jr, Palmese GR (2001) Clean Prod Process 2:228CrossRefGoogle Scholar
  45. Shibley AM (1982) Handbook of composite materials. Van Nostrand Reinhold, New York, p 448Google Scholar
  46. Shirrel CD, Sandow FA (1980) Fibrous composites in structural design. Plenum, New York, p 795CrossRefGoogle Scholar
  47. Slobodzinsky A (1982) Handbook of composite materials. Van Nostrand Reinhold, New York, p 368CrossRefGoogle Scholar
  48. Sturgeon JB (1978) In: Creep of engineering materials. A Journal of Strain Analysis Monograph, p 175Google Scholar
  49. Tarnopol’skii YM, Bail’ AI (1983) In: Fabrication of composites. North-Holland, Amsterdam, p 45Google Scholar
  50. Vaidya UK, Chawla KK (2008) Int Mater Rev 53:185CrossRefGoogle Scholar
  51. Waddon AJ, Hill MJ, Keller A, Blundell DJ (1987) J Mater Sci 27:1773CrossRefGoogle Scholar
  52. Xu ZR, Ashbee KHG (1994) J Mater Sci 29:394CrossRefGoogle Scholar

Further Reading

  1. Advani SG (ed) (1994) Flow and rheology in polymer composites manufacturing. Elsevier, AmsterdamGoogle Scholar
  2. Ehrburger P, Donnet JB (1980b) Interface in composite materials. Philos Trans R Soc Lond A294:495CrossRefGoogle Scholar
  3. Kelly A, Mileiko ST (eds) (1983) Fabrication of composites. North-Holland, AmsterdamGoogle Scholar
  4. Plueddemann EP (ed) (1974b) Interfaces in polymer matrix composites. Academic, New YorkGoogle Scholar
  5. Vaidya U (2011) Composites for automotive, truck and mass transit. DEStech Pub, Lancaster, PAGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations