• Krishan K. Chawla


We can define an interface between a reinforcement and a matrix as the bounding surface between the two across which a discontinuity in some parameter occurs. The discontinuity across the interface may be sharp or gradual. Mathematically, interface is a bidimensional region. In practice, we have an interfacial region with a finite thickness. In any event, an interface is the region through which material parameters, such as concentration of an element, crystal structure, atomic registry, elastic modulus, density, coefficient of thermal expansion, etc., change from one side to another. Clearly, a given interface may involve one or more of these items.


Contact Angle Interfacial Shear Stress Mechanical Bonding Interfacial Shear Strength Fiber Pullout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arsenault RJ, Fisher RM (1983) Scripta Met 17:67CrossRefGoogle Scholar
  2. Baier RE, Sharfin EG, Zisman WA (1968) Science 162:1360CrossRefGoogle Scholar
  3. Broutman LJ (1969). In: Interfaces in Composites, ASTM STP No. 452, American Society of Testing & Materials, Philadelphia, PA.Google Scholar
  4. Cahn JW, Hanneman RE (1964) Surf Sci 94:65Google Scholar
  5. Cahn JW (1979) In: Interfacial segregation. ASM, Metals Park, OH, p 3Google Scholar
  6. Chamis CC (1974) In: Composite materials, vol 6. Academic, New York, p 32Google Scholar
  7. Chawla KK (1997) Compos Interf 4:287CrossRefGoogle Scholar
  8. Chawla KK, Metzger M (1972) J Mater Sci 7:34CrossRefGoogle Scholar
  9. Chawla KK, Metzger M (1978) In: Advances in research on strength and fracture of materials, vol 3. Pergamon, New York, p 1039Google Scholar
  10. Chawla KK, Xu ZR (1994) In: High performance composites: commonalty of phenomena. TMS, Warrendale, PA, p 207Google Scholar
  11. Chawla KK, Xu ZR, Ha J-S, Lara-Curzio E, Ferber MK, Russ S (1995) Advances in ceramic matrix composites II. American Ceramic Society, Westerville, OH, p 779Google Scholar
  12. Chawla KK, Xu ZR, Hlinak A, Chung Y-W (1993) In: Advances in ceramic-matrix composites. American Ceramic Society, Westerville, OH, p 725Google Scholar
  13. Chawla N, Chawla KK, Koopman M, Patel B, Coffin C, Eldridge J (2001) Compos Sci Tech 61:1923CrossRefGoogle Scholar
  14. Doerner MF, Nix WD (1986) J Mater Res 1:601CrossRefGoogle Scholar
  15. Drzal LT, Madhukar M, Waterbury M (1994) Compos Sci Tech 27:65–71Google Scholar
  16. Drzal LT, Rich MJ, Lloyd PF (1983) J Adhesion 16:1–30CrossRefGoogle Scholar
  17. Drzal LT, Sugiura N, Hook D (1997) Compos Interf 4:337CrossRefGoogle Scholar
  18. Eldridge JI (1995). Mat. Res. Soc. Symp. Proc., vol 365, Materials Research Society, p 283Google Scholar
  19. Ferber MK, Wereszczak AA, Riester L, Lowden RA, Chawla KK (1993) In: Ceramic Sci. & Eng. Proc., Amer. Ceram. Soc., Westerville, OHGoogle Scholar
  20. Ferber MK, Lara-Curzio E, Russ S, Chawla KK (1995) In: Ceramic matrix composites—advanced high-temperature structural materials. Materials Research Society, Pittsburgh, PA, p 277Google Scholar
  21. Fine ME, Mitra R, Chawla KK (1993) Scripta Met Mater 29:221CrossRefGoogle Scholar
  22. Gupta V, Argon AS, Cornie JA, Parks DM (1990) Mater Sci Eng A126:105CrossRefGoogle Scholar
  23. Gupta V, Argon AS, Cornie JA, Parks DM (1992) J Mech Phys Solids 4:141CrossRefGoogle Scholar
  24. Hill RG, Nelson RP, Hellerich CL (1969) In: Proceedings of the refractory working group meeting, Seattle, WA, OctGoogle Scholar
  25. Hsueh C-H (1992) J Am Ceram Soc 76:3041CrossRefGoogle Scholar
  26. Iosipescu N (1967) J Mater 2:537Google Scholar
  27. Janczak J, Bürki G, Rohr L (1997) Key Eng Mater 127:623CrossRefGoogle Scholar
  28. Jangehud I, Serrano AM, Eby RK, Meador MA (1993) In: Proc. 21st Biennial Conf. on Carbon, Buffalo, NY, June 13–18Google Scholar
  29. Johnson RE (1959) J Phys Chem 63:1655CrossRefGoogle Scholar
  30. Kerans RJ, Hays RS, Pagano NJ, Parthasarathy TA (1991) Am Ceram Soc Bull 68:429Google Scholar
  31. Kerans RJ, Parthasarathy TA (1991) J Am Ceram Soc 74:1585CrossRefGoogle Scholar
  32. Lara-Curzio E, Ferber MK (1994) J Mater Sci 29:6158CrossRefGoogle Scholar
  33. Marshall DB, Shaw MC, Morris WL (1992) Acta Met Mater 40:443CrossRefGoogle Scholar
  34. Penn LS, Lee SM (1989) J Comp Tech & Res 11:23CrossRefGoogle Scholar
  35. Schoene C, Scala E (1970) Met Trans 1:3466Google Scholar
  36. Vennett RM, Wolf SM, Levitt AP (1970) Met Trans 1:1569CrossRefGoogle Scholar
  37. Vogelsang M, Arsenault RJ, Fisher RM (1986) Met Trans A 17:379CrossRefGoogle Scholar
  38. Walter JL, Cline HE, Koch E (1969) Trans AIME 245:2073Google Scholar
  39. Weihs TP, Nix WD (1991) J Am Ceram Soc 74:524CrossRefGoogle Scholar
  40. Wenzel RN (1936) Ind Eng Chem 28:987CrossRefGoogle Scholar

Further Reading

  1. Adams DF, Carlsson LA, Pipes RB (1998) Experimental characterization of advanced composite materials, 3rd edn. CRC, Boca Raton, FLGoogle Scholar
  2. Faber KT (1997) Annu Rev Mater Sci 27:499CrossRefGoogle Scholar
  3. Kim J-K, Mai Y-W (1998) Engineered interfaces in fiber reinforced composites. Elsevier, New YorkGoogle Scholar
  4. Plueddemann EP (ed) (1974) Interfaces in polymer matrix composites (vol 6 of the series Composite Materials), Academic, New YorkGoogle Scholar
  5. Stokes RJ, Evans DF (1997) Fundmentals of interfacial engineering. Wiley-VCH, New YorkGoogle Scholar
  6. Wagner HD, Marom G (eds) (1997) Composite interfaces (special issue—selected papers from the sixth international conference on composite interfaces (ICCI-6), Israel). VSP, Zeist, The NetherlandsGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations