Fatigue and Creep



In  Chap. 12 we described the monotonic behavior of a composite under ambient temperature conditions of loading. There are many applications of composites where cyclic fatigue and high-temperature, i.e., creep conditions prevail. Accordingly, in this chapter we go further in complexity and describe the fatigue and creep behavior of composites. Fatigue is the phenomenon of mechanical property degradation leading to failure of a material or a component under cyclic loading. The operative word in this definition is cyclic. This definition thus excludes the so-called phenomenon of static fatigue, which is sometimes used to describe stress corrosion cracking in glasses and ceramics in the presence of moisture. Creep refers to time-dependent deformation in a material, which becomes important at relatively high temperatures (T > 0.4Tm, where Tm is the melting point in kelvin). We first describe fatigue and then creep of composites.


Fatigue Crack Fatigue Life Creep Rate Fatigue Crack Growth Fatigue Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allison JE, Jones JW (1993) In: Suresh S, Mortensen A, Needleman A (eds) Fundamentals of metal matrix composites. Butterworth-Heinemann, Boston, MA, p 269CrossRefGoogle Scholar
  2. Artz E, Wilkinson DS (1986) Acta Metall 34:1893CrossRefGoogle Scholar
  3. Beaumont PWR (1989) In: Phillips LN (ed) Design with advanced composite materials. Springer, Berlin, p 303Google Scholar
  4. Bender BA, Wallace JS, Schrodt DJ (1991) J Mater Sci 12:970CrossRefGoogle Scholar
  5. Boccaccini AR, Pearce DH, Janczak J, Beier W, Ponton CB (1997) Mater Sci Technol 13:852CrossRefGoogle Scholar
  6. Boccaccini AR, Ponton CB, Chawla KK (1998) Mater Sci Eng A241:142Google Scholar
  7. Bonnen JJ, You CP, Allison JE, Jones JW (1990) Proc Int Conf Fatigue. Pergamon, New York, p 887Google Scholar
  8. Champion AR, Krueger WH, Hartman HS, Dhingra AK (1978) Proc:1978 Intl Conf Compos Mater (ICCM/2). TMS-AIME, New York, p 883Google Scholar
  9. Chawla KK (1973a) Metallography 6:155CrossRefGoogle Scholar
  10. Chawla KK (1973b) Philos Mag 28:401CrossRefGoogle Scholar
  11. Chawla KK (1975a) Fibre Sci Technol 8:49CrossRefGoogle Scholar
  12. Chawla KK (1975b) In: Grain boundaries in eng. materials, Proc. 4th Bolton landing conf. Claitor’s Pub. Div., Baton Rouge, LA, p 435Google Scholar
  13. Chawla KK, Liaw PK (1979) J Mater Sci 14:2143CrossRefGoogle Scholar
  14. Chawla KK, Schneider H, Xu ZR, Schmücker M (1996) In: High temperature materials: design & processing considerations, Engineering foundation conference, Davos, Switzerland, TMS, Warrendale, PA, 19–24 May. p 235Google Scholar
  15. Chawla N (1997) Met Mater Trans 28A:2423CrossRefGoogle Scholar
  16. Chawla N, Holmes JW, Lowden RA (1996b) Scripta Mater 35:1411CrossRefGoogle Scholar
  17. Chawla N, Andres C, Jones JW, Allison JE (1998a) Metall Mater Trans 29:2843CrossRefGoogle Scholar
  18. Chawla N, Tur YK, Holmes JW, Barber JR, Szweda A (1998b) J Am Ceram Soc 81:1221CrossRefGoogle Scholar
  19. Chawla N, Kerr M, Chawla KK (2005) J Am Ceram Soc 88:101CrossRefGoogle Scholar
  20. Chawla N, Ganesh VV (2010) Int J Fatigue 32:856CrossRefGoogle Scholar
  21. Christman T, Suresh S (1988a) Acta Metall 36:1691CrossRefGoogle Scholar
  22. Christman T, Suresh S (1988b) Mater Sci Eng 102A:211CrossRefGoogle Scholar
  23. Crowe CR, Hasson DF (1982) In: Proc. 6th Int Conf. on the strength of metals and alloys. Pergamon, Oxford, p 859Google Scholar
  24. Davidson DL (1989) Eng Fract Mech 33:965CrossRefGoogle Scholar
  25. Davies PW, Nelmes G, Williams KR, Wilshire B (1973) Metal Sci J 7:87CrossRefGoogle Scholar
  26. Dlouhy A, Merk N, Eggeler G (1993) Acta Metall Mater 41:3245CrossRefGoogle Scholar
  27. Dragone TL, Nix WD (1992) Acta Metall Mater 40:2781CrossRefGoogle Scholar
  28. Dragone TL, Schlautmann JJ, Nix WD (1991) Metall Trans 22A:1029CrossRefGoogle Scholar
  29. Dunand DC, Derby B (1993) In: Suresh S, Mortensen A, Needleman A (eds) Fundamentals of metal matrix composites. Butterworth-Heinemann, Boston, MA, p 191CrossRefGoogle Scholar
  30. Dvorak GJ, Johnson WS (1980) Int J Fracture 16:585CrossRefGoogle Scholar
  31. Eggeler G, Dlouhy A (1994) In: Chawla KK, Liaw PK, Fishman SG (eds) High performance composites: commonalty of phenomena. TMS, Warrendale, PA, p 477Google Scholar
  32. Eriksen RH (1976) Composites 7:189CrossRefGoogle Scholar
  33. Godefroid LB, Chawla KK (1988) In: 3rd Latin American colloquium on fatigue and fracture of materials, Rio de Janeiro, BrazilGoogle Scholar
  34. Goel A, Chawla KK, Vaidya UK, Chawla N, Koopman M (2009) Mater Charact 60:537CrossRefGoogle Scholar
  35. Gomez JP, Wawner FW (1988) Personal communicationGoogle Scholar
  36. Gouda M, Prewo KM, McEvily AJ (1981) In: Fatigue of fibrous composite materials, ASTM STP 723. American Society of Testing and Materials, Philadelphia, PA, p 101CrossRefGoogle Scholar
  37. Hack JE, Page RA, Leverant GR (1987) Met Trans A 15A:1389Google Scholar
  38. Hahn HT, Kim RY (1976) J Compos Mater 10:156CrossRefGoogle Scholar
  39. Hahn HT, Lorenzo L (1984) In: Advances in fracture research, ICF6, Vol. 1. Pergamon, Oxford, p 549Google Scholar
  40. Han LX, Suresh S (1989) J Am Ceram Soc 72:1233CrossRefGoogle Scholar
  41. Helms HE, Haley PJ (1989) In: Tennery VJ (ed) Ceramic materials and components for engines. Amer. Ceram. Soc, Westerville, OH, p 1347Google Scholar
  42. Highsmith AL, Reifsnider KL (1982) In: Damage in composite materials, ASTM STP 775. Amer. Soc. of Testing and Mater, Philadelphia, PA, p 103Google Scholar
  43. Holmes JW (1991) J Mater Sci 26:1808CrossRefGoogle Scholar
  44. Izuka Y, Norita T, Nishimura T, Fujisawa K (1986) In: Carbon fibers. Noyes Pub, Park Ridge, NJ, p 14Google Scholar
  45. Johnson WS (1988) In: Mechanical and Physical Behavior of Metallic and Ceramic Composites, 9th Risø Intl. Symp. on Metallurgy and Materials Science, Riso Nat. Lab., Roskilde, Denmark, p 403Google Scholar
  46. Johnson WS, Wallis RR (1986) Composite materials: fatigue and fracture, ASTM STP 907. ASTM, Philadelphia, PA, p 161CrossRefGoogle Scholar
  47. Karandikar PG, Chou T-W (1992) Ceram Eng Sci Proc 13:882Google Scholar
  48. Kelly A, Street KN (1972a) Proc R Soc Lond A 328:267CrossRefGoogle Scholar
  49. Kelly A, Street KN (1972b) Proc R Soc Lond A 328:283CrossRefGoogle Scholar
  50. Kelly A, Tyson WR (1966) J Mech Phys Solids 14:177CrossRefGoogle Scholar
  51. Kerr M, Chawla N (2004) Acta Mater 52:4527CrossRefGoogle Scholar
  52. Kumai S, Knott JF (1991) Mater Sci Eng A146:317CrossRefGoogle Scholar
  53. Kumai S, King JE, Knott JF (1990) Fatigue Fract Eng Mater Struct 13:511CrossRefGoogle Scholar
  54. Kwei LK, Chawla KK (1992) J Mater Sci 27:1101CrossRefGoogle Scholar
  55. Lavengood RE, Gulbransen LE (1969) Polym Eng Sci 9:365CrossRefGoogle Scholar
  56. Lee CS, Chawla KK (1987) In: Proc.: Industry-University Adv. Mater. Conf. TMS-AIME, Warrendale, PA, p 289Google Scholar
  57. Lee CS, Chawla KK, Rigsbee JM, Pfeifer M (1988) In: Cast reinforced metal composites. ASM Int, Metals Park, OH, p 301Google Scholar
  58. Levin M, Karlsson B, Wasén J (1989) In: Fundamental relationships between microstructures and mechanical properties of metal matrix composites. TMS, Warrendale, PA, p 421Google Scholar
  59. Lilholt H, Taya M (1987) Proc: ICCM/6. Elsevier, Barking, pp 2.234–2.244Google Scholar
  60. Lin H-T, Becher PF (1990) J Am Ceram Soc 73:1378CrossRefGoogle Scholar
  61. Logsdon WA, Liaw PK (1986) Eng Fract Mech 24:737CrossRefGoogle Scholar
  62. Mah T, Hecht NL, McCullum DE, Hoenigman JR, Kim HM, Katz AP, Lipsitt HA (1984) J Mater Sci 19:1191CrossRefGoogle Scholar
  63. Mandell JF, Mcgarry FJ, Huang DD, Li CG (1983) Polym Compos 4:32CrossRefGoogle Scholar
  64. McCartney RF, Richard RC, Trozzo PS (1967) Trans ASM 60:384Google Scholar
  65. McGuire MA, Harris B (1974) J Phys D Appl Phys 7:1788CrossRefGoogle Scholar
  66. McLean M (1983) Directionally solidified materials for high temperature service. The Metals Soc, LondonGoogle Scholar
  67. McLean M (1985) Proc.: 5th Intl. Conf. on Composite Materials (ICCM/V). TMS-AIME, Warrendale, PA, p 639Google Scholar
  68. Morimoto T, Yamaoka T, Lilholt H, Taya M (1988) J Eng Mater Tech Trans ASME 110:70CrossRefGoogle Scholar
  69. Nardone VC, Strife JR (1987) Metall Trans 18A:109CrossRefGoogle Scholar
  70. Nardone VC, Tien JK (1986) Scripta Mater 20:797CrossRefGoogle Scholar
  71. Nieh TG (1984) Metall Trans 15A:139CrossRefGoogle Scholar
  72. O’Brien TK (1984) Interlaminar fracture of composites. NASA TM 85768Google Scholar
  73. O’Brien TK, Reifsnider KL (1981) J Compos Mater 15:55CrossRefGoogle Scholar
  74. Ogin SL, Smith PA, Beaumont PWR (1985) Compos Sci Technol 22:23CrossRefGoogle Scholar
  75. Owens MJ, Dukes R (1967) J Strain Anal 2:272CrossRefGoogle Scholar
  76. Owens MJ, Smith TR, Dukes R (1969) Plast Polymers 37:227Google Scholar
  77. Page RA, Hack JE, Sherman R, Leverant GR (1987) Met Trans A 15A:1397Google Scholar
  78. Pandey AB, Mishra RS, Mahajan YR (1992) Acta Metall Mater 40:2045CrossRefGoogle Scholar
  79. Paris PC, Erdogan F (1963) J Basic Eng Trans ASME 85:528CrossRefGoogle Scholar
  80. Parker JD, Wilshire B (1975) Metal Sci J 9:248CrossRefGoogle Scholar
  81. Pfeiffer NJ, Alic JA (1978) J Eng Mater Technol 100:32CrossRefGoogle Scholar
  82. Phillips DC (1983) In: Handbook of composites, vol 4. North-Holland, Amsterdam, p 472Google Scholar
  83. Prewo KM, Brennan JJ, Layden GK (1986) Am Ceram Soc Bull 65:305Google Scholar
  84. Pruitt L, Suresh S (1992) J Mater Sci Lett 11:1356CrossRefGoogle Scholar
  85. Pysher DJ, Goretta KC, Hodder RS Jr, Tressler RE (1989) J Am Ceram Soc 72:284CrossRefGoogle Scholar
  86. Ramakrishnan V, Jayaraman N (1993) J Mater Sci 28:5580Google Scholar
  87. Reifsnider KL, Henneke EG, Stinchcomb WW, Duke JC (1981) In: Mechanics of Composite materials. Pergamon, New York, p 399Google Scholar
  88. Rohatgi PK, Asthana R, Tewari SN, Narendranath CS (1994) In: Chawla KK, Liaw PK, Fishman SG (eds) High performance composites: commonalty of phenomena. TMS, Warrendale, PA, p 93Google Scholar
  89. Routbort JL, Goretta KC, Dominguez-Rodriguez A, de Arrellano-Lopez AR (1990) J Hard Mater 1:221Google Scholar
  90. Saff CR, Harmon DM, Johnson WS (1988) J Met 40:58Google Scholar
  91. Shang JK, Yu W, Ritchie RO (1988) Mater Sci Eng A102:181CrossRefGoogle Scholar
  92. Sørensen BF, Holmes JW (1995) Scripta Met Mater 32:1393CrossRefGoogle Scholar
  93. Stoloff NS (1987) Advances in composite materials. Applied Sci. Pub, London, p 247Google Scholar
  94. Suresh S (1991) J Hard Mater 2:29Google Scholar
  95. Suresh S, Han LX, Petrovic JJ (1988) J Am Ceram Soc 71:l58–161CrossRefGoogle Scholar
  96. Talreja R (1985a) Fatigue of composite materials. Technical University of Denmark, LyngbyGoogle Scholar
  97. Taylor LG, Ryder DA (1976) Composites 1:27CrossRefGoogle Scholar
  98. Wang Z, Laird C, Hashin Z, Rosen BW, Yen CF (1991) J Mater Sci 26:5335CrossRefGoogle Scholar
  99. Webster D (1982) Metall Mater Trans 13A:1511CrossRefGoogle Scholar
  100. Wetherhold RC, Zawada LP (1991) In: Fractography of glasses and ceramics. In: Frechete VD, Varner JR (eds) Ceramic transactions, vol 17. Amer. Ceram. Soc, Westerville, OH, p 391Google Scholar
  101. Wiederhorn SM, Hockey BJ (1991) Ceram Int 17:243CrossRefGoogle Scholar
  102. Wiederhorn SM, Liu W, Carroll DF, Chuang T-J (1988) J Am Ceram Soc 12:602CrossRefGoogle Scholar
  103. Williams DR, Fine ME (1985) In: Proc.: Fifth Intl Conf. Composite Materials (ICCM/V). TMS-AIME, Warrendale, PA, p 639Google Scholar
  104. Williams DR, Fine ME (1987) In: Proc.: 6th Intl. Conf. on Composite Materials (ICCM/VI), vol 2. Elsevier Applied Science, London, p 113Google Scholar
  105. Xu ZR, Chawla KK, Wolfenden A, Neuman A, Liggett GM, Chawla N (1995) Mater Sci Eng A A203:75CrossRefGoogle Scholar
  106. Yang J-M, Chen ST (1992) Adv Compos Lett 1:27Google Scholar

Further Reading

  1. Hertzberg RW, Manson JA (1980) Fatigue of engineering plastics. Academic, New YorkGoogle Scholar
  2. Talreja R (1985b) Fatigue of composite materials. Technical University of Denmark, LyngbyGoogle Scholar
  3. Talreja R (ed) (1994) Damage mechanics of composite materials. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations