Micromechanics of Composites



In this chapter we consider the results of incorporating a reinforcement (fibers, whiskers, particles, etc.) in a matrix to make a composite. It is of great importance to be able to predict the properties of a composite, given the properties of the components and the geometric arrangement of the components in the composite. We examine various micromechanical aspects of composites. A particularly simple case is the rule-of-mixtures, a rough tool that considers the composite properties as volume-weighted averages of the component properties. It is important to realize that the rule-of-mixtures works in only certain simple situations. Composite density is an example where the rule-of-mixtures is applied readily. In the case of mechanical properties, there are certain restrictions to its applicability. When more precise information is desired, it is better to use more sophisticated approaches based on the theory of elasticity.


Elastic Constant Fiber Length Particulate Composite Load Transfer Fiber Volume Fraction 


  1. Arsenault RJ, Fisher RM (1983) Scripta Met 17:67CrossRefGoogle Scholar
  2. Behrens E (1968) J Composite Mater 2:2CrossRefGoogle Scholar
  3. Bhatt H, Donaldson KY, Hasselman DPH, Bhatt RT (1992) J Mater Sci 27:6653CrossRefGoogle Scholar
  4. Chamis CC (1983) NASA Tech. Memo. 83320, presented at the 38th annual conference of the Society of Plastics Industry (SPI), Houston, TXGoogle Scholar
  5. Chamis CC, Sendecky GP (1968) J Compos Mater 2:332CrossRefGoogle Scholar
  6. Chawla KK (1973a) Metallography 6:155CrossRefGoogle Scholar
  7. Chawla KK (1973b) Philos Mag 28:401CrossRefGoogle Scholar
  8. Chawla KK (1974) In: Grain boundaries in engineering materials. Claitor’s Publishing Division, Baton Rouge, LA, p 435Google Scholar
  9. Chawla KK (1976a) J Mater Sci 11:1567CrossRefGoogle Scholar
  10. Chawla KK (1976b) In: Proceedings of the international conference on composite materials/1975, TMS-AIME, New York. p 535Google Scholar
  11. Chawla KK, Metzger M (1972) J Mater Sci 7:34CrossRefGoogle Scholar
  12. Clingerman ML, King JA, Schulz KH, Meyers JD (2002) J Appl Polym Sci 83:1341CrossRefGoogle Scholar
  13. Cox HL (1952) Brit J Appl Phys 3:122CrossRefGoogle Scholar
  14. Day RJ, Robinson IM, Zakikhani M, Young RJ (1987) Polymer 28:1833CrossRefGoogle Scholar
  15. Day RJ, Piddock V, Taylor R, Young RJ, Zakikhani M (1989) J Mater Sci 24:2898CrossRefGoogle Scholar
  16. Dow NF (1963) General Electric Report No. R63-SD-61Google Scholar
  17. Eshelby JD (1957) Proc R Soc A241:376CrossRefGoogle Scholar
  18. Eshelby JD (1959) Proc R Soc A252:561CrossRefGoogle Scholar
  19. Fukuda H, Chou TW (1981) J Compos Mater 15:79CrossRefGoogle Scholar
  20. Galiotis C, Robinson IM, Young RJ, Smith BJE, Batchelder DN (1985) Polym Commun 26:354Google Scholar
  21. Gladysz GM, Chawla KK (2001) Composites A 32:173CrossRefGoogle Scholar
  22. Hale DK (1976) J Mater Sci 11:2105Google Scholar
  23. Halpin JC, Kardos JL (1976) Polym Eng Sci 16:344CrossRefGoogle Scholar
  24. Halpin JC, Tsai SW (1967) Environmental factors estimation in composite materials design. AFML TR 67-423Google Scholar
  25. Hashin Z, Rosen BW (1964) J Appl Mech 31:233CrossRefGoogle Scholar
  26. Hasselman DPH, Johnson LF (1987) J Compos Mater 27:508CrossRefGoogle Scholar
  27. Hill R (1964) J Mech Phys Solids 12:199CrossRefGoogle Scholar
  28. Hill R (1965) J Mech Phys Solids 13:189CrossRefGoogle Scholar
  29. Kardos JL (1971) CRC Crit Rev Solid State Sci 3:419CrossRefGoogle Scholar
  30. Kelly A (1970) Chemical and mechanical behavior of inorganic materials. Wiley-Interscience, New York, p 523Google Scholar
  31. Kelly A (1973a) Strong solids, 2nd edn. Clarendon, Oxford, p 157Google Scholar
  32. Kerner EH (1956) Proc Phys Soc Lond B69:808CrossRefGoogle Scholar
  33. Lewis CA, Withers PJ (1995) Acta Metall Mater 43:3685CrossRefGoogle Scholar
  34. Love AEH (1952) A treatise on the mathematical theory of elasticity, 4th edn. Dover, New York, p 144Google Scholar
  35. Marom GD, Weinberg A (1975) J Mater Sci 10:1005CrossRefGoogle Scholar
  36. Mori T, Tanaka K (1973) Acta Metall 21:571CrossRefGoogle Scholar
  37. Nardone VC, Prewo KM (1986) Scripta Met 20:43CrossRefGoogle Scholar
  38. Nielsen LE (1974) Mechanical properties of polymers and composites, vol 2. Marcel Dekker, New YorkGoogle Scholar
  39. Nye JF (1985) Physical properties of crystals. Oxford University Press, London, p 131Google Scholar
  40. Poritsky H (1934) Physics 5:406CrossRefGoogle Scholar
  41. Reuss A (1929) Z Angew Math Mech 9:49CrossRefGoogle Scholar
  42. Rosen BW (1973) Composites 4:16CrossRefGoogle Scholar
  43. Rosen BW, Hashin Z (1970) Int J Eng Sci 8:157CrossRefGoogle Scholar
  44. Schadler LS, Galiotis C (1995) Int Mater Rev 40:116CrossRefGoogle Scholar
  45. Schapery RA (1969) J Compos Mater 2:311Google Scholar
  46. Schuster DM, Scala E (1964) Trans Met Soc-AIME 230:1635Google Scholar
  47. Song M, He Y, Fang S (2010) J Mater Sci 45:4097CrossRefGoogle Scholar
  48. Termonia Y (1987) J Mater Sci 22:504CrossRefGoogle Scholar
  49. Timoshenko S, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New York, p 416Google Scholar
  50. Turner PS (1946) J Res Natl Bur Stand 37:239CrossRefGoogle Scholar
  51. Vaidya RU, Chawla KK (1994) Compos Sci Technol 50:13CrossRefGoogle Scholar
  52. Vaidya RU, Venkatesh R, Chawla KK (1994) Composites 25:308CrossRefGoogle Scholar
  53. Vogelsang M, Arsenault RJ, Fisher RM (1986) Metall Trans A 7A:379CrossRefGoogle Scholar
  54. Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, LeipzigGoogle Scholar
  55. Weber L (2005) Acta Mater 53:1945CrossRefGoogle Scholar
  56. Weber L, Dorn J, Mortensen A (2003a) Acta Mater 51:3199CrossRefGoogle Scholar
  57. Weber L, Fischer C, Mortensen A (2003b) Acta Mater 51:495CrossRefGoogle Scholar
  58. J.M. Whitney (1973). J. Struct. Div., 113.Google Scholar
  59. Xu ZR, Chawla KK, Mitra R, Fine ME (1994) Scripta Met Mater 31:1525CrossRefGoogle Scholar
  60. Yang X, Hu X, Day RJ, Young RJ (1992) J Mater Sci 27:1409CrossRefGoogle Scholar
  61. Young RJ, Day RJ, Zakikhani M (1990) J Mater Sci 25:127CrossRefGoogle Scholar
  62. Young RJ (1994) In: Chawla KK, Liaw PK, Fishman SG (eds) High-performance composites: commonalty of phenomena. TMS, Warrendale, PA. p 263Google Scholar

Further Reading

  1. Herakovich CT (1998) Mechanics of fibrous composites. Wiley, New YorkGoogle Scholar
  2. Kelly A (1973b) Strong solids, 2nd edn. Clarendon, OxfordGoogle Scholar
  3. Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogenous materials. North-Holland, AmsterdamGoogle Scholar
  4. Tewary VK (1978) Mechanics of fibre composites. Halsted, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations