Organic and Polymeric TFTs for Flexible Displays and Circuits

  • Michael G. Kane
Part of the Electronic Materials: Science & Technology book series (EMST, volume 11)


Organic and polymeric thin-film transistors are a natural complement to flexible substrates. This is because organic thin-film transistors (OTFTs) can be made using a very low temperature process, not much above room temperature, allowing electronic circuits and systems to be made on plastic films.1 The organic and polymeric materials that can be used as semiconductors, dielectrics, and conductors are themselves flexible like the substrate, so that a complete flexible electronic system is possible.

There are several benefits of building an electronic system on a flexible substrate. In some applications, there may be advantages to mechanical flexibility in actual use, as with a rugged, unbreakable, rollable display. In other cases, flexibility may not be needed in the application, but benefits may derive from the lower manufacturing costs of continuous roll-to-roll fabrication. For example, low-cost displays fabricated in a web-based line might end up laminated to a hard,...


Gate Voltage Subthreshold Swing Passive Matrix Electrophoretic Display Root Mean Square Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to acknowledge G. Gu for many helpful discussions about organic thin-film transistors.


  1. 1.
    Vissenberg M, Matters M (1998) Theory of the field-effect mobility in amorphous organic transistors. Phys Rev B 57:12964–12967CrossRefGoogle Scholar
  2. 2.
    Slade HC (1997) Device and material characterization and analytic modeling of amorphous silicon thin film transistors. PhD dissertation, University of VirginiaGoogle Scholar
  3. 3.
    Cerdeira A et al. (2001) New procedure for the extraction of basic a-Si:H TFT model parameters in the linear and saturation regions. Solid-State Electron 45:1077–1080CrossRefGoogle Scholar
  4. 4.
    Fadlallah M et al. (2006) Modeling and characterization of organic thin film transistors for circuit design. J Appl Phys 99:104504-1–104504-7CrossRefGoogle Scholar
  5. 5.
    Pesavento PV et al. (2006) Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility. J Appl Phys 99:094504-1–094504-10CrossRefGoogle Scholar
  6. 6.
    Gundlach DJ et al. (2006) An experimental study of contact effects in organic thin-film transistors. J Appl Phys 100:024509-1–024509-13CrossRefGoogle Scholar
  7. 7.
    Tsividis YP (1999) Operation and modeling of the MOS transistor, 2nd ed. Oxford University Press, New YorkGoogle Scholar
  8. 8.
    Wagner V et al. (2006) Megahertz operation of organic field-effect transistors based on poly(3-hexylthiophene). Appl Phys Lett 89:243515-1–243515-3CrossRefGoogle Scholar
  9. 9.
    Katz HE et al. (2002) Organic field-effect transistors with polarizable gate insulators. J Appl Phys 91:1572–1576CrossRefGoogle Scholar
  10. 10.
    Knipp D et al. (2003) Pentacene thin-film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport. J Appl Phys 93:347–355CrossRefGoogle Scholar
  11. 11.
    Salleo A et al. (2005) Reversible and irreversible trapping at room temperature in poly(thiophene) thin-film transistors. Appl Phys Lett 86:263505-1–263505-3CrossRefGoogle Scholar
  12. 12.
    Han SH, Jang J (2006) Chemical and electrical stabilities of organic thin-film transistors for display applications. J Soc Inf Display 14:1097–1101CrossRefGoogle Scholar
  13. 13.
    Gu G et al. (2007) Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors. J Appl Phys 101:014504-1–1-9Google Scholar
  14. 14.
    Salleo A, Chabinyc M (2006) Electrical and environmental stability of polymer thin-film transistors. In: Klauk H (ed) Organic electronics: Materials, manufacturing, and applications. Wiley-VCH, Weinheim, pp 108–131CrossRefGoogle Scholar
  15. 15.
    Powell MJ et al. (1992) Defect pool in amorphous-silicon thin-film transistors. Phys Rev B 45:4160–4170CrossRefGoogle Scholar
  16. 16.
    Hack M et al. (1993) Physical models for degradation effects in polysilicon thin-film transistors. IEEE Trans Electron Dev 40:890–897CrossRefGoogle Scholar
  17. 17.
    Dresner J (1991) Dynamic changes in characteristics of a-Si transistors during fast pulsed operation. IEEE Trans Electron Dev 38:2673–2676CrossRefGoogle Scholar
  18. 18.
    Gu G et al. (2005) Electron traps and hysteresis in pentacene-based organic thin-film transistors. Appl Phys Lett 87:243512-1–243512-3Google Scholar
  19. 19.
    Zilker SJ et al. (2001) Bias stress in organic thin-film transistors and logic gates. Appl Phys Lett 79:1124–1126CrossRefGoogle Scholar
  20. 20.
    Jung T et al. (2005) Moisture induced surface polarization in a poly(4-vinyl phenol) dielectric in an organic thin-film transistor. Appl Phys Lett 87:182109-1–182109-3Google Scholar
  21. 21.
    IEEE Std 1620-2004, IEEE standard for test methods for the characterization of organic transistors and materials. IEEE, New YorkGoogle Scholar
  22. 22.
    Brody TP (1996) The birth and early childhood of active matrix - a personal memoir. J Soc Inf Display 4:113–127CrossRefGoogle Scholar
  23. 23.
    Alt PM, Pleshko P (1974) Scanning limitations of liquid-crystal displays. IEEE Trans Electron Dev ED-21:146–155CrossRefGoogle Scholar
  24. 24.
    Huitema E et al. (2002) Polymer-based transistors used as pixel switches in active-matrix displays. J Soc Inf Display 10:195–202CrossRefGoogle Scholar
  25. 25.
    Martine S et al. (2003) Organic-polymer thin-film transistors for active-matrix flat-panel displays? J Soc Inf Display 11:543–549CrossRefGoogle Scholar
  26. 26.
    Rogers JA et al. (2001) Paper-like electronic displays: Large-area rubber stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Nat Acad Sci 98:4835–4840Google Scholar
  27. 27.
    Kane MG et al. (2001) AMLCDs using organic thin-film transistors on polyester substrates. SID Int Symp Dig Tech Papers, vol 32, pp 57–59CrossRefGoogle Scholar
  28. 28.
    Mach P et al. (2001) Monolithically integrated flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors. Appl Phys Lett 78:3592–3594CrossRefGoogle Scholar
  29. 29.
    Huitema HEA et al. (2001) Plastic transistors in active-matrix displays. Nature 414:599CrossRefGoogle Scholar
  30. 30.
    Burns SE et al. (2006) A flexible plastic SVGA e-paper display. SID Int Symp Dig Tech Papers, vol 37, pp 74–76CrossRefGoogle Scholar
  31. 31.
    Hong MP et al. (2005) Recent progress in large sized and high performance organic TFT array. SID Int Symp Dig Tech Papers, vol 36, pp 23–25CrossRefGoogle Scholar
  32. 32.
    Sheraw CD et al. (2002) Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl Phys Lett 80:1088–1090CrossRefGoogle Scholar
  33. 33.
    Kymissis I et al. (2002) Patterning pentacene organic thin-film transistors. J Vac Sci Technol B 20:956CrossRefGoogle Scholar
  34. 34.
    DeFranco JA et al. (2006) Photolithographic patterning of organic electronic materials. Org Electron 7:22CrossRefGoogle Scholar
  35. 35.
    Gu G et al. (2004) Organic thin-film transistor with photolithographically patterned top contacts and active layer. Device Res Conf Dig, pp 83-84Google Scholar
  36. 36.
    Dawson RMA et al. (1998) Design of an improved pixel for a polysilicon active matrix organic light emitting diode display. SID Int Symp Dig Tech Papers, vol 29, pp 11-14CrossRefGoogle Scholar
  37. 37.
    Shimoda T et al. (1998) High resolution light emitting polymer display driven by low-temperature polysilicon thin-film transistor with integrated driver. Int Display Res Conf, pp 217–220Google Scholar
  38. 38.
    Kanzaki K, Sakamoto M (2001) Direction of low-temperature p-Si technology. SID Int Symp Dig Tech Papers, vol 32, pp 242-245Google Scholar
  39. 39.
    Wu CC et al. (1997) Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates. IEEE Electron Dev Lett 18:609–612CrossRefGoogle Scholar
  40. 40.
    Tsujimura T et al. (2003) A 20-inch OLED display driven by super-amorphous-silicon technology. SID Int Symp Dig Tech Papers, vol 34, pp 6–9CrossRefGoogle Scholar
  41. 41.
    Chung K et al. (2006) Large-sized full-color AMOLED TV: Advancements and issues. SID Int Symp Dig Tech Papers, vol 37, pp 1958–1963CrossRefGoogle Scholar
  42. 42.
    Nathan A et al. (2004) Amorphous silicon backplane electronics for OLED displays. IEEE J Select Top Quant Electron 10:58–69CrossRefGoogle Scholar
  43. 43.
    Sirringhaus H et al. (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280:1741–1744CrossRefGoogle Scholar
  44. 44.
    Dodabalapur A et al. (1998) Organic smart pixels. Appl Phys Lett 73:142–144CrossRefGoogle Scholar
  45. 45.
    Chuman T et al. (2004) Active matrix organic light emitting diode panel using organic thin-film transistors. SID Int Symp Dig Tech Papers, vol 35, pp 45–47CrossRefGoogle Scholar
  46. 46.
    Zhou L et al. (2005) Pentacene TFT driven AMOLED displays. IEEE Electron Dev Lett 26:640–642CrossRefGoogle Scholar
  47. 47.
    Suh M et al. (2006) 4.0 inch organic thin-film transistor (OTFT) based active matrix organic light emitting diode (AMOLED) display. SID Int Symp Dig Tech Papers, vol 37, pp 116–118CrossRefGoogle Scholar
  48. 48.
    Brody TP et al. (1975) A 6×6-in 20-lpi electroluminescent display panel. IEEE Trans Electron Dev ED-22:739–748CrossRefGoogle Scholar
  49. 49.
    Kim B-K et al. (2004) Recoverable residual image induced by hysteresis of thin-film transistors in active matrix organic light-emitting diode displays. Jpn J App Phys 43:L482–L485CrossRefGoogle Scholar
  50. 50.
    Dawson RMA et al. (1999) A poly-Si active matrix OLED display with integrated drivers. SID Int Symp Dig Tech Papers, p 30Google Scholar
  51. 51.
    Dawson RMA et al. (1998) The impact of the transient response of organic light-emitting diodes on the design of active matrix OLED displays. Int Electron Devices Meeting, pp 875–878Google Scholar
  52. 52.
    Dawson RMA, Kane MG (2001) Pursuit of active matrix organic light-emitting diode displays. SID Int Symp Dig Tech Papers, vol 32, pp 372–375CrossRefGoogle Scholar
  53. 53.
    Fish D et al. (2002) A comparison of pixel circuits for active matrix polymer/organic LED displays. SID Int Symp Dig Tech Papers, vol 33, pp 968–971CrossRefGoogle Scholar
  54. 54.
    Sanford JL, Libsch FR (2003) TFT AMOLED pixel circuits and driving methods. SID Int Symp Dig Tech Papers, vol 34, pp 10–13CrossRefGoogle Scholar
  55. 55.
    Nathan A et al. (2005) Driving schemes for a-Si and LTPS AMOLED displays. J Display Tech 1:267–277CrossRefGoogle Scholar
  56. 56.
    Fish D et al. (2005) Optical feedback for AMOLED display compensation using LTPS and a-Si:H technologies. SID Int Symp Dig Tech Papers, vol 36, pp 1340–1343CrossRefGoogle Scholar
  57. 57.
    Jackson TN et al. (1998) Organic thin-film transistors for organic light-emitting flat-panel display backplanes. IEEE J Select Top Quant Electron 4:100–104CrossRefGoogle Scholar
  58. 58.
    Aerts WF et al. (2002) Design of an organic pixel addressing circuit for an active-matrix OLED display. IEEE Trans Electron Dev 49:2124–2130CrossRefGoogle Scholar
  59. 59.
    IEEE Std 1620.1-2006, IEEE standard for test methods for the characterization of organic transistor-based ring oscillators. IEEE, New YorkGoogle Scholar
  60. 60.
    Krumm J et al. (2004) A polymer transistor circuit using PDHHT. IEEE Electron Dev Lett 25:399–401CrossRefGoogle Scholar
  61. 61.
    Drury CJ et al. (1998) Lost-cost all-polymer integrated circuits. Appl Phys Lett 73:108–110CrossRefGoogle Scholar
  62. 62.
    van Lieshout PJG et al. (2004) System-on-plastic with organic electronics: A flexible QVGA display and integrated drivers. SID Int Symp Dig Tech Papers, vol 35, pp 1290–1293CrossRefGoogle Scholar
  63. 63.
    Kane MG et al. (2000) Analog and digital circuits using organic thin-film transistors on polyester substrates. IEEE Electron Dev Lett 21:534–536CrossRefGoogle Scholar
  64. 64.
    Gay N et al. (2006) Analog signal processing with organic FETs. IEEE Int Solid-State Circuits Conf, pp 278–279Google Scholar
  65. 65.
    Carr WN, Mize JP (1972) MOS/LSI design and application. McGraw-Hill, New YorkGoogle Scholar
  66. 66.
    Iba S et al. (2005) Control of threshold voltage of organic field-effect transistors with double-gate structures. Appl Phys Lett 87:023509-1–023509-3CrossRefGoogle Scholar
  67. 67.
    Gelinck GH et al. (2005) Dual-gate organic thin-film transistors. Appl Phys Lett 87:073508-1–073508-3Google Scholar
  68. 68.
    Morana M et al. (2005) Double-gate organic field-effect transistor. Appl Phys Lett 87:153511-1–153511-3CrossRefGoogle Scholar
  69. 69.
    Koo JB et al. (2006) Pentacene thin-film transistors and inverters with dual-gate structure. Electrochem Solid-State Lett 9:G320–G322CrossRefGoogle Scholar
  70. 70.
    Takamiya M et al. (2006) An organic FET SRAM for braille sheet display with back gate to increase static noise margin. IEEE Int Solid-State Circuits Conf, pp 276-277Google Scholar
  71. 71.
    Stewart RG et al. (1995) Circuit design for a-Si AMLCDs with integrated drivers. SID Int Symp Dig Tech Papers, vol 26, pp 89–92Google Scholar
  72. 72.
    Lebrun H et al. (2005) Design of integrated drivers with amorphous silicon TFTs for small displays: Basic concepts. SID Int Symp Dig Tech Papers, vol 36, pp 950–953CrossRefGoogle Scholar
  73. 73.
    Finkenzeller K (2003) RFID handbook, 2nd ed. Wiley, West Sussex, EnglandCrossRefGoogle Scholar
  74. 74.
    Paret D (2005) RFID and contactless smart card applications. Wiley, West Sussex, EnglandCrossRefGoogle Scholar
  75. 75.
    Baude PF et al. (1993) Organic semiconductor RFID transponders. Int Electron Devices Meeting Tech Dig, pp 191–194Google Scholar
  76. 76.
    Baude PF et al. (2004) Pentacene based RFID transponder circuitry. Device Research Conf Dig, pp 227–228Google Scholar
  77. 77.
    Böhm M et al. (2006) Printable electronics for polymer RFID applications. IEEE Int Solid-State Circuits Conf, pp 270–271Google Scholar
  78. 78.
    Cantatore E et al. (2006) A 13.56 RFID system based on organic transponders. IEEE Int Solid-State Circuits Conf, pp 272–273Google Scholar
  79. 79.
    Subramanian V et al. (2005) Progress toward development of all-printed RFID tags: Materials, processes, and devices. Proc IEEE 93:1330–1338Google Scholar
  80. 80.
    Steudel S et al. (2005) 50 MHz rectifier based on an organic diode. Nature Mater 4:597–600CrossRefGoogle Scholar
  81. 81.
    Masui S et al. (1999) A 13.56 MHz CMOS RF identification transponder integrated circuit with a dedicated CPU. IEEE Int Solid-State Circuits Conf, pp 162-163Google Scholar
  82. 82.
    Rotzoll R et al. (2006) Radio frequency rectifiers based on organic thin-film transistors. Appl Phys Lett 88:123502-1–123502-3CrossRefGoogle Scholar
  83. 83.
    Ma L et al. (2004) High-speed and high current density C60 diodes. Appl Phys Lett 84: 4786–4788CrossRefGoogle Scholar
  84. 84.
    Huang D, Subramanian V (2006) Iodine-doped pentacene schottky diodes for high-frequency RFID rectification. Device Research Conf Dig, pp 219–220Google Scholar
  85. 85.
    Peumans P et al. (2000) Efficient, high-bandwidth organic multilayer photodetectors. Appl Phys Lett 76:3855–3857CrossRefGoogle Scholar
  86. 86.
    Peumans P et al. (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723CrossRefGoogle Scholar
  87. 87.
    Mattis B, Subramanian V (2006) A field-programmable antifuse memory for RFID on plastic. Device Research Conf Dig, pp 215–216Google Scholar
  88. 88.
    Ma LP et al. (2002) Organic electrical bistable devices and rewritable memory cells. Appl Phys Lett 80:2997–2999CrossRefGoogle Scholar
  89. 89.
    Bozano LD et al. (2004) Mechanism for bistability in organic memory devices. Appl Phys Lett 84:607–609CrossRefGoogle Scholar
  90. 90.
    Tondelier D et al. (2004) Metal/organic/metal bistable memory devices. Appl Phys Lett 85:5763–5765CrossRefGoogle Scholar
  91. 91.
    Leong WL et al. (2007) Charging phenomena in pentacene-gold nanoparticle memory device. Appl Phys Lett 90:042906-1–042906-3CrossRefGoogle Scholar
  92. 92.
    Singh TB et al. (2004) Nonvolatile organic field-effect transistor memory element with a polymeric gate electret. Appl Phys Lett 85:5409–5411CrossRefGoogle Scholar
  93. 93.
    Naber RCG et al. (2005) Low-voltage polymer field-effect transistors for nonvolatile memories. Appl Phys Lett 87:203509-1–203509-3CrossRefGoogle Scholar
  94. 94.
    Sirringhaus H et al. (2003) Active matrix displays made with printed polymer thin-film transistors. SID Int Symp Dig Tech Papers, vol 34, pp 1084–1087CrossRefGoogle Scholar
  95. 95.
    Huitema HEA et al. (2003) A flexible QVGA display with organic transistors. Proc. Int. Display Workshop. Fukuoka, Japan, pp 1663–1664Google Scholar
  96. 96.
    Ho J-C et al. (2004) Pentacene organic thin-film transistor integrated with color twisted nematic liquid crystals display (CTNLCD). SID Int Symp Dig Tech Papers, vol 35, pp 1298–1301CrossRefGoogle Scholar
  97. 97.
    Nomoto K et al. (2005) A high-performance short-channel bottom-contact OTFT and its application to AM-TN-LCD. IEEE Trans Electron Dev 52:1519–1526CrossRefGoogle Scholar
  98. 98.
    Kawasaki M et al. (2006) High-resolution full-color LCD driven by OTFTs using novel passivation film. IEEE Trans Electron Dev 53:435–441CrossRefGoogle Scholar
  99. 99.
    Kitamura M et al. (2003) Organic light-emitting diodes driven by pentacene-based thin-film transistors. Appl Phys Lett 83:3410–3412CrossRefGoogle Scholar
  100. 100.
    Seong R-G et al. (2005) Flexible AMOLED backplane technology using pentacene TFTs. Int Symp Super-Functionality Organic Devices, pp 146–149Google Scholar
  101. 101.
    Mizukami M et al. (2006) Flexible AMOLED panel driven by bottom-contact OTFTs. IEEE Electron Dev Lett 27:249–251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Sarnoff Corporation, CN5300PrincetonUSA

Personalised recommendations