Advertisement

Sheet-Type Sensors and Actuators

  • Takao Someya
Chapter
Part of the Electronic Materials: Science & Technology book series (EMST, volume 11)

Introduction

Recent intensive research and development of organic field-effect transistors (FETs) [1, 2, 3, 4, 5, 6] have been motivated by a new class of applications that cannot be easily realized by conventional electronics based on inorganic semiconductors. Organic transistors are mechanically flexible, thin, lightweight, and shock-resistant, because organic devices are manufactured on plastic films at low (ambient) temperature. Furthermore, manufacturing costs of organic transistor circuits would be inexpensive, even for large areas, when they are fabricated using printing technologies and/or roll-to-roll processes.

There are two major applications for organic transistors. The first one is a flexible display. This new display includes a paper-like display or an electronic paper, where electric inks, electroluminescent (EL) devices, and liquid crystals or other mediums are powered by organic transistor active matrices [4, 7]. The second one is a radio frequency identification...

Keywords

Ionic Polymer Metal Composite Static Random Access Memory Anisotropic Conductive Film Static Random Access Memory Cell Organic Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The research work in this chapter was carried in collaboration with Prof. Takayasu Sakurai, Prof. Makoto Takamiya, Dr. Tsuyoshi Sekitani, Dr. Hiroshi Kawaguchi, Yusaku Kato, and Yoshiaki Noguchi.

References

  1. 1.
    Drury CJ, Mutsaers CMJ, Hart CM, Matters M, de Leeuw DM (1998) Low-cost all-polymer integrated circuits. Appl Phys Lett 73:108–110CrossRefGoogle Scholar
  2. 2.
    Crone B, Dodabalapur A, Lin YY, Filas RW, Bao Z, LaDuca A, Sarpeshkar R, Katz HE, Li W (2000) Large-scale complementary integrated circuits based on organic transistors. Nature 403:521–523CrossRefGoogle Scholar
  3. 3.
    Gelinck GH, Geuns TCT, de Leeuw DM (2000) High-performance all-polymer integrated circuits. Appl Phys Lett 77:1487–1489CrossRefGoogle Scholar
  4. 4.
    Gelinck GH, Huitema HEA, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten JBPH, Geuns TCT, Beenhakkers M, Giesbers JB, Huisman BH, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, van Rens BJE, de Leeuw DM (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3: 106–110CrossRefGoogle Scholar
  5. 5.
    Huitema E, Gelinck G, van der Putten B, Cantatore E, van Veenendaal E, Schrijnemakers L, Huisman BH, Leeuw DM (2003) Plastic transistors in active-matrix displays. ISSCC Dig. Tech. Papers, pp 380–381Google Scholar
  6. 6.
    Brederlow R, Briole S, Klauk H, Halik M, Zschieschang U, Schmid G, Gorriz-Saez JM, Pacha C, Thewes R, Weber W (2003) Evaluation of the performance potential of organic TFT circuits. ISSCC Dig. Tech. Papers, pp 378–379.Google Scholar
  7. 7.
    Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P (2001) Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci USA 98:4835–4840CrossRefGoogle Scholar
  8. 8.
    Baude PF, Ender DA, Haase MA, Kelley TW, Muyres DV, Theiss SD (2003) Pentacene-based radio-frequency identification circuitry. Appl Phys Lett 82:3964–3966CrossRefGoogle Scholar
  9. 9.
    Baude PF, Ender DA, Kelley TW, Haase MA, Muyres DV, Theiss SD (2003) Organic semiconductor RFID transponders. IEDM Tech. Dig., pp 191–194.Google Scholar
  10. 10.
    Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T (2004) A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA 101:9966–9970CrossRefGoogle Scholar
  11. 11.
    Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 102(35):12321–12325CrossRefGoogle Scholar
  12. 12.
    Kawaguchi H, Someya T, Sekitani T, Sakurai T (2005) Cut-and-paste customization of organic FET integrated circuit and its application to electronic artificial skin. IEEE J Solid-State Circ 40:177–185CrossRefGoogle Scholar
  13. 13.
    Someya T, Kawaguchi H, Sakurai T (2004) Cut-and-paste organic FET customized ICs for application to artificial skin. ISSCC Dig. Tech. Papers, pp 288–289Google Scholar
  14. 14.
    Someya T, Sakurai T (2003) Integration of organic field-effect transistors and rubbery pressure sensors for artificial skin applications. IEDM Tech. Dig., pp 203–206Google Scholar
  15. 15.
    Someya T, Sakurai T (2006) Large-area detectors and sensors. In: Klauk H (ed) Organic electronics. Wiley-VCH, Weinheim, pp 395–410CrossRefGoogle Scholar
  16. 16.
    Someya T, Iba S, Kato Y, Sekitani T, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T (2004) A large-area, flexible, and lightweight sheet image scanner. IEDM Tech. Dig., pp 580–581Google Scholar
  17. 17.
    Kawaguchi H, Iba S, Kato Y, Sekitani T, Someya T, Sakurai T (2005) A sheet-type scanner based on a 3D-stacked organic-transistor circuit using double wordline and bitline structure. ISSCC Tech. Dig., pp 365–368Google Scholar
  18. 18.
    Someya T, KatoY, Iba S, Kawaguchi H, Sakurai T (2005) Integration of organic field-effect transistors with organic photodiodes for a large-area, flexible, and lightweight sheet image scanner. IEEE Trans Electron Dev 52(11):2502–2511CrossRefGoogle Scholar
  19. 19.
    Kawaguchi H, Iba S, KatoY, SekitaniT, Someya T, Sakurai T (2006) A 3D-stack organic sheet-type scanner with double-wordline and double-bitline structure. IEEE Sensors J 6(5): 1209–1217CrossRefGoogle Scholar
  20. 20.
    KatoY, Iba S, Teramoto R, Sekitani T, Someya T, Kawaguchi H, Sakurai T (2004) High mobility of pentacene field-effect transistors with polyimide gate dielectric layers. Appl Phys Lett 84:3789–3791CrossRefGoogle Scholar
  21. 21.
    Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles – a review. Smart Mater Struct 7:R15–R30CrossRefGoogle Scholar
  22. 22.
    Fujiwara N, Asaka K, Nishimura Y, Oguro K, Torikai E (2000) Preparation of gold-solid polymer electrolyte composites as electric stimuli-responsive materials. Chem Mater 12: 1750–1754CrossRefGoogle Scholar
  23. 23.
    Kato Y, Sekitani T, Takamiya M, Doi M, Asaka K, Sakurai T, Someya T (2007) Sheet-type Braille displays by integrating organic field-effect transistors and polymeric actuators. IEEE Trans Electron Dev 54(2):202–209CrossRefGoogle Scholar
  24. 24.
    Takamiya M, Sekitani T, Kato Y, Kawaguchi H, Someya T, Sakurai T (2007) An organic FET SRAM with back gate to increase static noise margin and its application to Braille sheet display. IEEE J Solid-State Circ 42(1):93–100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Engineering, Quantum-Phase Electronics CenterThe University of TokyoBunkyo-kuJapan

Personalised recommendations