Materials and Novel Patterning Methods for Flexible Electronics

  • William S. Wong
  • Michael L. Chabinyc
  • Tse-Nga Ng
  • Alberto Salleo
Part of the Electronic Materials: Science & Technology book series (EMST, volume 11)


The materials considerations and print-processing techniques for fabricating electronic devices on flexible platforms are reviewed. Organic and inorganic semiconductors, dielectrics, and metals for thin-film transistor (TFT) fabrication are presented. Jet-printing techniques for both etch-mask patterning and deposition and patterning of solution-processable polymers will be highlighted. The characterization of low-temperature compatible materials will also be reviewed in regard to conditions that determine device stability and performance in polymeric and silicon-based devices. Finally, an overview of specific applications for organic and inorganic semiconductor devices in backplane, display, and image sensor arrays will be presented.


Organic Semiconductor Plasma Enhance Chemical Vapor Deposition Gate Bias Noise Equivalent Power Flexible Electronic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the many insights and assistance of experimental data provided by their colleagues and collaborators. The authors would particularly wish to recognize the contributions and efforts of the following colleagues from PARC: Robert A. Street, Rene Lujan, Steve Ready, Beverly Russo, Maryanne Rosenthal, Michael Young, Scott Limb, Sanjiv Sambandan, Jürgen Daniel, Ana-Claudia Arias, Eugene Chow, Vicki Aguilar, and William A. MacDonald of DuPont-Teijin Films. Research performed at PARC was partially supported by the Advanced Technology Program of the National Institute of Standards and Technology (contract #: 70NANB3H3029).


  1. 1.
    Wong WS, Ready S, Matusiak R, White SD, Lu JP, Ho J, Street RA (2002) Amorphous silicon thin-film transistors and arrays fabricated by jet printing. Appl Phys Lett 80:610–612CrossRefGoogle Scholar
  2. 2.
    Wong WS, Ready SE, Lu JP, Street RA (2003) Hydrogenated amorphous silicon thin-film transistor arrays fabricated by digital lithography. IEEE Electron Dev Lett 24:577–579CrossRefGoogle Scholar
  3. 3.
    Creagh LT, McDonald M (2003) Design and performance of ink-jet print heads for non-graphic-arts applications. Mater Res Soc Bull 28:807–811CrossRefGoogle Scholar
  4. 4.
    Young R, Tamura Y, Wang CE, Hsieh D (2003) Cost and efficiency comparisons between manufacturing generations and regions. Proceeding of the International Display and Manufacturing Conference, IDMC 2003, pp 285–288Google Scholar
  5. 5.
    Paul KE, Wong WS, Ready SE, Street RA (2003) Additive jet printing of polymer thin-film transistors. Appl Phys Lett 83:2070–2702CrossRefGoogle Scholar
  6. 6.
    Arias AC, Ready SE, Lujan R, Wong WS, Paul KE, Salleo A, Chabinyc ML, Apte R, Street RA, Wu Y, Liu P, Ong B (2004) All jet-printed polymer thin-film transistor active-matrix backplanes. Appl Phys Lett 85:3304–3306CrossRefGoogle Scholar
  7. 7.
    Jain K, Klosner M, Zemel M, Raghunandan S (2005) Flexible electronics and displays: High-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. Proc IEEE 93:1500–1510CrossRefGoogle Scholar
  8. 8.
    Sheats JR (2002) Roll-to-roll manufacturing of thin film electronics. Proc SPIE – Int Soc Opt Eng 4688:240–248Google Scholar
  9. 9.
    Gleskova H, Wagner S, Suo Z (1998) a-Si:H TFTs made on polyimide foil by PE-CVD at 150°C. Mat Res Soc Symp Proc 508:73–78CrossRefGoogle Scholar
  10. 10.
    Sarma KR (2004) a-Si TFT OLED fabricated on low-temperature flexible plastic substrate. Mat Res Soc Symp Proc 814:369CrossRefGoogle Scholar
  11. 11.
    Zhou L, Jackson T, Brandon E, West W (2004) Flexible substrate a-Si:H TFTs for space applications. Dev Res Conf 1:123–124Google Scholar
  12. 12.
    Gleskova H, Wagner S (2001) DC-gate-bias stressing of a-Si:H TFTs fabricated at 150°C on polyimide foil. IEEE Trans Electron Dev 48:1667–1671CrossRefGoogle Scholar
  13. 13.
    Sazonov A, Stryahilev D, Lee CH, Nathan A (2005) Low-temperature materials and thin-film transistors for flexible electronics. Proc IEEE 93:1420–1428CrossRefGoogle Scholar
  14. 14.
    Shimoda T, Morii TK, Seki S, Kiguchi H (2003) Ink-jet printing of light emitting polymer displays. Mater Res Soc Bull 28:821–827CrossRefGoogle Scholar
  15. 15.
    Sele CW, vonWerne T, Friend RH, Sirringhaus H (2005) Lithography-free, self-aligned ink-jet printing with sub-hundred-nanometer resolution. Adv Mater 17:997–1001CrossRefGoogle Scholar
  16. 16.
    Tsukada T (2000) Active-matrix liquid-crystal displays. In: Street RA (ed) Technology and applications of amorphous silicon. Springer-Verlag, HeidelbergGoogle Scholar
  17. 17.
    Street RA (2000) Large area image sensor arrays. In: Street RA (ed) Technology and applications of amorphous silicon. Springer-Verlag, HeidelbergGoogle Scholar
  18. 18.
    Shimoda T, Matsuki Y, Furusawa M, Aoki T, Yudasaka I, Tanaka H, Iwasawa H, Wang D, Miyasaka M, Takeuchi Y (2006) Solution-processed silicon films and transistors. Nature 440:783–786CrossRefGoogle Scholar
  19. 19.
    Hoffman RL, Norris BJ, Wager JF (2003) ZnO-based transparent thin-film transistors. Appl Phys Lett 82:733–735CrossRefGoogle Scholar
  20. 20.
    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–492CrossRefGoogle Scholar
  21. 21.
    Noh YY, Cheng X, Sirringhaus H, Sohn JI, Welland ME, Kang DJ (2007) Ink-jet printed ZnO nanowire field effect transistors. Appl Phys Lett 91:043109CrossRefGoogle Scholar
  22. 22.
    Veres J, Ogier SD, Leeming SW, Cupertino DC, Khaffaf SM (2003) Low-k Insulators as the choice of dielectrics in organic field-effect transistors. Adv Func Mater 13:199–204CrossRefGoogle Scholar
  23. 23.
    Sirringhaus H (2005) Device physics of solution-processed organic field-effect transistors. Adv Mater 17:2411–2425CrossRefGoogle Scholar
  24. 24.
    Gundlach DJ, Lin YY, Jackson TN, Nelson SF, Schlom DG (1997) Pentacene organic thin-film transistors – molecular ordering and mobility. IEEE Electron Dev Lett 18: 87–89CrossRefGoogle Scholar
  25. 25.
    Nomoto K, Hirai N, Yoneya N, Kawashima N, Noda M, Wada M, Kasahara J (2005) A high-performance short-channel bottom-contact OTFT and its application to AM-TN-LCD. IEEE Trans Electron Dev 52:1519–1526CrossRefGoogle Scholar
  26. 26.
    Payne MM, Parkin SR, Anthony JE, Kuo CC, Jackson TN (2005) Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/Vs. J Am Chem Soc 127:4986–4987CrossRefGoogle Scholar
  27. 27.
    McCulloch I, Heeney M, Bailey C, Genevicius K, Macdonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, McGehee MD, Toney MF (2006) Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 5:328–333CrossRefGoogle Scholar
  28. 28.
    Steudel S, DeVusser S, DeJonge S, Janssen D, Verlaak S, Genoe J, Heremans P (2004) Influence of the dielectric roughness on the performance of pentacene transistors. Appl Phys Lett 85:4400–4402CrossRefGoogle Scholar
  29. 29.
    Chabinyc ML, Lujan R, Endicott F, Toney MF, McCulloch I, Heeney M (2006) Effects of the surface roughness of plastic-compatible inorganic dielectrics on polymeric thin-film transistors. Appl Phys Lett 90:233508CrossRefGoogle Scholar
  30. 30.
    Nunes G Jr, Zane SG, Meth JS (2005) Styrenic polymers as gate dielectrics for pentacene field-effect transistors. J Appl Phys 98:104053CrossRefGoogle Scholar
  31. 31.
    Jung T, Dodabalapur A, Wenz R, Mohapatra S (2005) Moisture induced surface polarization in a poly(4-vinyl phenol) dielectric in an organic thin-film transistor. Appl Phys Lett 87:182109CrossRefGoogle Scholar
  32. 32.
    Chua LL, Zaumseil J, Chang JF, Ou ECW, Ho PKH, Sirringhaus H, Friend RH (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 343: 194–199CrossRefGoogle Scholar
  33. 33.
    Hong CM, Wagner S (2000) Ink-jet printed copper source/drain metallization for amorphous silicon thin-film transistors. IEEE Electron Dev Lett 21:384–386CrossRefGoogle Scholar
  34. 34.
    Huang D, Liao F, Molesa S, Redinger D, Subramanian V (2003) Plastic compatible low-resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150:412–417CrossRefGoogle Scholar
  35. 35.
    Chung J, Ko S, Bieri NR, Grigoropoulos CP, Poulikakos D (2004) Conductor microstructures by laser curing of printed gold nanoparticle ink. Appl Phys Lett 84:801–803CrossRefGoogle Scholar
  36. 36.
    Wu Y, Li Y, Ong BS (2006) Printed silver ohmic contacts for high-mobility organic thin-film transistors. J Am Chem Soc 128:4202–4203CrossRefGoogle Scholar
  37. 37.
    Groenendaal LB, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythoiphene) and its derivatives: Past, present, and future. Adv Mater 12: 481–494CrossRefGoogle Scholar
  38. 38.
    Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P (2001) Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Nat Acad Sci 98:4835–4840CrossRefGoogle Scholar
  39. 39.
    Wagner S, Gleskova H, Sturm JC, Suo Z (2000) Novel processing technology for macroelectronics. In: Street RA (ed) Technology and applications of amorphous silicon, vol 37. Springer-Verlag, Berlin, pp 222–251Google Scholar
  40. 40.
    Wong WS, Chabinyc ML, Limb S, Ready SE, Lujan R, Daniel J, Street RA (2007) Digital lithographic processing for large-area electronics. J Soc Info Display 15:463CrossRefGoogle Scholar
  41. 41.
    Wong WS, Chow EC, Geluz-Aguilar V, Lujan R, Chabinyc ML (2006) Fine-feature patterning of self-aligned polymeric thin-film transistors fabricated by digital lithography and electroplating. Appl Phys Lett 89:142118-1–142118-3Google Scholar
  42. 42.
    Street RA, Wong WS, Ready SE, Chabinyc ML, Arias AC, Limb S, Salleo A, Lujan R (2006) Jet printing flexible displays. Mater Today 9:32CrossRefGoogle Scholar
  43. 43.
    Zhao N, Chiesa M, Sirringhaus H, Li Y, Wu Y, Ong B (2007) Self-aligned ink-jet printing of highly conducting gold electrodes with submicron resolution. J Appl Phys 101: 064513CrossRefGoogle Scholar
  44. 44.
    Thomasson DB, Jackson TN (1998) Fully self-aligned tri-layer a-Si:H thin-film transistors with deposited doped contact layer. IEEE Electron Dev Lett 19:124CrossRefGoogle Scholar
  45. 45.
    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution ink-jet printing of all-polymer transistor circuits. Science 290:2123–2126CrossRefGoogle Scholar
  46. 46.
    Li SP, Newsome CJ, Kugler T, Ishida M, Inoue S (2007) Polymer thin-film transistors with self-aligned gates fabricated using ink-jet printing. Appl Phys Lett 90:172103CrossRefGoogle Scholar
  47. 47.
    Schiaffino S, Sonin AA (1997) Formation and stability of liquid and molten beads on a solid surface. J Fluid Mech 343:95–110CrossRefGoogle Scholar
  48. 48.
    Duineveld P (2003) The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. Phys Fluids 477:175–200Google Scholar
  49. 49.
    Chang JF, Sun B, Breiby DW, Nielsen MM, Solling TI, Giles M, McCulloch I, Sirringhaus H (2004) Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem Mater 16:4772–4776CrossRefGoogle Scholar
  50. 50.
    DeLongchamp DM, Vogel BM, Jung Y, Gurau MC, Richter CA, Kirillov OA, Obrzut J, Fischer DA, Sambasivan S, Richter LJ, Lin EK (2005) Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed. Chem Mater 17:5610–5612CrossRefGoogle Scholar
  51. 51.
    Salleo A, Street RA (2003) Light-induced bias stress reversal in polyfluorene thin-film transistors. J Appl Phys 94(1):471CrossRefGoogle Scholar
  52. 52.
    Salleo A, Endicott F, Street RA (2005) Reversible and irreversible trapping in poly(thiophene) thin-film transistors. Appl Phys Lett 86:263505CrossRefGoogle Scholar
  53. 53.
    Ng TN, Marohn JA, Chabinyc ML (2006) Comparing the kinetics of bias stress in organic field-effect transistors with different dielectric interfaces. J Appl Phys 100:084505CrossRefGoogle Scholar
  54. 54.
    Schoonveld WA, Oostinga JB, Vrijmoeth J, Klapwijk TM (1999) Charge trapping instabilities in sexithiophene thin-film transistors. Synth Metals 101:6078CrossRefGoogle Scholar
  55. 55.
    Brown AR, Jarrett CP, de Leeuw DM, Matters M (1997) Field-effect transistors made from solution-processed organic semiconductors. Synth Metals 88:37CrossRefGoogle Scholar
  56. 56.
    Zilker SJ, Detcheverry C, Cantatore E, de Leeuw DM (2000) Bias stress in organic thin-film transistors and logic gates. Appl Phys Lett 79:1124CrossRefGoogle Scholar
  57. 57.
    Knipp D, Street RA, Völkel A, Ho J (2003) Pentacene thin-film transistors on inorganic dielectrics: Morphology, structural properties and electronic transport. J Appl Phys 93:347CrossRefGoogle Scholar
  58. 58.
    Gu G, Kane MG, Mau SC (2007) Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors. J Appl Phys 101:014504CrossRefGoogle Scholar
  59. 59.
    Chabinyc ML, Endicott F, Vogt BD, de Longchamp DM, Lin EK, Wu YL, Liu P, Ong BS (2006) Effects of humidity on unencapsulated poly(thiophene) thin-film transistors. Appl Phys Lett 88:113514CrossRefGoogle Scholar
  60. 60.
    Street RA, Chabinyc ML, Endicott F, Ong B (2006) Extended time bias stress effects in polymer transistors. J Appl Phys 11:114518CrossRefGoogle Scholar
  61. 61.
    Street RA, Salleo A, Chabinyc ML (2003) Bipolaron mechanism for bias-stress effects in organic transistors. Phys Rev B 68(8):085316CrossRefGoogle Scholar
  62. 62.
    Salleo A, Street RA (2004) Kinetics of bias-stress and bipolaron formation in regio-regular poly(thiophene). Phys Rev B 70(23):235324CrossRefGoogle Scholar
  63. 63.
    Lloyd-Hughes J, Richards T, Sirringhaus H, Castro-Camus E, Herz LM, Johnston MB (2006) Charge trapping in polymer transistors probed by terahertz spectroscopy and scanning probe potentiometry. Appl Phys Lett 89:112101CrossRefGoogle Scholar
  64. 64.
    Karim KS, Nathan A, Hack M, Milne WI (2004) Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs. IEEE Electron Dev Lett 25:188CrossRefGoogle Scholar
  65. 65.
    Salleo A, Chabinyc ML (2006) Electrical and environmental stability of polymer thin-film transistors. In: Klauk H (ed) Organic electronics: Materials, manufacturing and applications. Wiley VCH, Weinheim, GermanyGoogle Scholar
  66. 66.
    Libsch FR, Kanicki J (1993) Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors. Appl Phys Lett 62:1286CrossRefGoogle Scholar
  67. 67.
    Gomes HL, Stallinga P, Dinelli F, Murgia M, Biscarini F, de Leeuw DM, Muccini M, Müllen K (2005) Electrical characterization of organic based transistors: stability issues. Polym Adv Tech 16:227CrossRefGoogle Scholar
  68. 68.
    Gomes HL, Stallinga P, Dinelli F, Murgia M, Biscarini F, de Leeuw DM, Muck T, Geurts J, Molenkamp LW, Wagner V (2004) Bias-induced threshold voltages shifts in thin-film organic transistors. Appl Phys Lett 84:3184CrossRefGoogle Scholar
  69. 69.
    Powell MJ, van Berkel C, Franklin AR, Deane SC, Milne WI (1992) Defects pool in amorphous-silicon thin-film transistors. Phys Rev B 45:4160CrossRefGoogle Scholar
  70. 70.
    Féry C, Racine B, Vaufrey D, Doyeux H, Ciná S (2005) Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes. Appl Phys Lett 87:213502CrossRefGoogle Scholar
  71. 71.
    Powell MJ, van Berkel C, Hughes JR (1989) Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors. Appl Phys Lett 54:1323CrossRefGoogle Scholar
  72. 72.
    Street RA, Salleo A (2002) Contact effects in polymer transistors. Appl Phys Lett 81:2887CrossRefGoogle Scholar
  73. 73.
    Necliudov PV, Shur MS, Gundlach DJ, Jackson TN (2000) Modeling of organic thin-film transistors of different designs. J Appl Phys 88:6594CrossRefGoogle Scholar
  74. 74.
    Chabinyc ML, Lu JP, Street RA, Wu YL, Liu P, Ong BS (2004) Short channel effects in regioregular poly(thiophene) thin-film transistors. J Appl Phys 96:2063CrossRefGoogle Scholar
  75. 75.
    Wang GM, Swensen J, Moses D, Heeger AJ (2003) Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. J Appl Phys 93:6137CrossRefGoogle Scholar
  76. 76.
    Yang CS, Smith LL, Arthur CB, Parsons GN (2000) Stability of low-temperature amorphous silicon thin-film transistors formed on glass and transparent plastic substrates. J Vac Sci Technol B 18:683CrossRefGoogle Scholar
  77. 77.
    van Berkel C, Powell MJ (1987) Resolution of amorphous silicon thin-film transistor instability mechanisms using ambipolar transistors. Appl Phys Lett 51:1094CrossRefGoogle Scholar
  78. 78.
    Wong WS, Lujan R, Daniel JH, Limb S (2005) Digital lithography for large-area electronics on flexible substrates. J Non-Cryst Solids 352(9–20):1981–1985Google Scholar
  79. 79.
    Choi JB, Yun DC, Park YI, Kim JH (2000) Properties of hydrogenated amorphous silicon thin-film transistors fabricated at 150°C. J Non-Cryst Solids 266–269:1315CrossRefGoogle Scholar
  80. 80.
    Ikeda M, Mizutani Y, Ashida S, Yamada K (2000) Characteristics of low-temperature-processed a-Si TFT for plastic substrates. IEICE Trans Electron E83-C:1584Google Scholar
  81. 81.
    Powell MJ, van Berkel C, French ID, Nicholls DH (1987) Bias dependence of instability mechanisms in amorphous silicon thin-film transistors. Appl Phys Lett 51:1242CrossRefGoogle Scholar
  82. 82.
    Long K, Kattamis AZ, Cheng IC, Gleskova H, Wagner S, Sturm JC (2006) Stability of amorphous-silicon TFTs deposited on clear plastic substrates at 250°C to 280°C. IEEE Electron Dev Lett 27:111CrossRefGoogle Scholar
  83. 83.
    Wang Q, Ward S, Duda A, Hu J, Stradins P, Crandall RS, Branz HM, Perlov C, Jackson W, Mei P, Taussig C (2004) High-current-density thin-film silicon diodes grown at low temperature. Appl Phys Lett 85:2122CrossRefGoogle Scholar
  84. 84.
    Vieira M, Louro P, Fernandes M, Schwarz R, Schubert M (2004) Large area p–i–n flexible image sensors. Mater Res Soc Proc 814:I7–11.1CrossRefGoogle Scholar
  85. 85.
    Kim KH, Vygranenko Y, Bedzyk M, Chang JH, Chuang TC, Striakhilev D, Nathan A, Heiler G, Tredwell T (2007) High performance hydrogenated amorphous silicon n–i–p photo-diodes on glass and plastic substrates by low-temperature fabrication process. Mater Res Soc Proc 989:A19–05CrossRefGoogle Scholar
  86. 86.
    Ng TN, Lujan RA, Sambandan S, Street RA, Limb S, Wong WS (2007) Low temperature a-Si:H photodiodes and flexible image sensor arrays patterned by digital lithography. Appl Phys Lett 91:063505CrossRefGoogle Scholar
  87. 87.
    Kroon A, van Swaaij RACMM (2001) Spatial effects on ideality factor of amorphous silicon pin diodes. J Appl Phys 90:994CrossRefGoogle Scholar
  88. 88.
    Knobloch A, Manuelli A, Bernds A, Clemens W (2004) Fully printed integrated circuits from solution processed polymers. J Appl Phys 96:2286–2291CrossRefGoogle Scholar
  89. 89.
    Zielke D, Hubler AC, Hahn U, Brandt N, Bartzsch M, Fugmann U, Fischer T, Veres J, Ogier S (2005) Polymer-based organic field-effect transistor using offset printed source/drain electrodes. Appl Phys Lett 87:123508CrossRefGoogle Scholar
  90. 90.
    Yu G, Wang J, McElvain J, Heeger AJ (1998) Large-area, full-color image sensors made with semiconducting polymers. Adv Mater 10:1431CrossRefGoogle Scholar
  91. 91.
    Street RA, Mulato M, Lau R, Ho J, Graham J, Popovic Z, Hor J (2001) Image capture array with an organic light sensor. Appl Phys Lett 78:4193CrossRefGoogle Scholar
  92. 92.
    Someya T, Kato Y, Iba S, Noguchi Y, Sekitani T, Kawaguchi H, Sakurai T (2005) Integration of organic FETs with organic photodiodes for a large area, flexible, and lightweight sheet image scanners. IEEE Trans Electron Dev 52:2502CrossRefGoogle Scholar
  93. 93.
    Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693CrossRefGoogle Scholar
  94. 94.
    Schilinsky P, Waldauf C, Hauch J, Brabec CJ (2004) Polymer photodiode detectors: Progress and recent developments. Thin Solid Films 451–452:105CrossRefGoogle Scholar
  95. 95.
    Huitema HEA, Gelinck GH, van der Putten JBPH, Kuijk KE, Hart CM, Cantatore E, Herwig PT, van Breemen AJJM, de Leeuw DM (2001) Polymer electronics: Plastic transistors in active-matrix displays. Nature (London, United Kingdom) 414:599CrossRefGoogle Scholar
  96. 96.
    Gelinck GH, Huitema HEA, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten JBPH, Geuns TCT, Beenhakkers M, Giesbers JB, Huisman BH, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, van Rens BJE, de Leeuw DM (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3:106–110CrossRefGoogle Scholar
  97. 97.
    Burns SE, Cain P, Mills J, Wang J, Sirringhaus H (2003) Inkjet printing of polymer thin-film transistor circuits. Mater Res Soc Bull 28:829–834CrossRefGoogle Scholar
  98. 98.
    Chang P, Molesa S, Murphy A, Frechet J, Subramanian V (2006) Inkjetted crystalline single-monolayer oligothiophene OTFTs. IEEE Trans Electron Dev 53:594–600CrossRefGoogle Scholar
  99. 99.
    Blanchet GB, Loo YL, Rogers JA, Gao F, Fincher CR (2003) Large area, high resolution, dry printing of conducting polymers for organic electronics. Appl Phys Lett 82:463–465CrossRefGoogle Scholar
  100. 100.
    Arias AC, Daniel J, Krusor B, Ready S, Sholin V, Street R (2007) All-additive ink-jet-printed display backplanes: materials development and integration. J Soc Info Display 15:485–490CrossRefGoogle Scholar
  101. 101.
    Daniel J, Arias AC, Krusor B, Lujan R, Street RA (2006) The road towards large-area electronics without vacuum tools. Electrochem Soc Trans 3:229Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • William S. Wong
    • 1
  • Michael L. Chabinyc
  • Tse-Nga Ng
  • Alberto Salleo
  1. 1.Palo Alto Research CenterPalo AltoUSA

Personalised recommendations