Advertisement

Flexible Transition Metal Oxide Electronics and Imprint Lithography

  • Warren B. Jackson
Chapter
Part of the Electronic Materials: Science & Technology book series (EMST, volume 11)

Introduction

The previous chapters have discussed inorganic low-deposition temperature materials suitable for flexible applications, such as amorphous and nano-crystalline-silicon (Si) and organic conductors. This chapter presents the results of a recently developed inorganic low-temperature materials system, transition metal oxides (TMOs), that appears to be a very promising, new high-performance flexible electronic materials system. An equally, if not more, important part of this chapter, is the presentation of self-aligned imprint lithography (SAIL) a new fabrication method for flexible substrates that solves the layer-to-layer alignment problem.

The new materialssystem is TMO based consisting of one or more transition metals and oxygen. Some of the more common examples include zinc oxide, zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO) and zinc indium oxide (ZIO). These low-temperature amorphous materials can form the active material for transistors with a performance...

Keywords

Imprint Polymer Plasma Enhance Chemical Vapor Deposition Flexible Substrate Shadow Mask Rigid Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I would like to thank G. Herman and R. Hoffman introducing me to the field of transition metal oxide transistors and for making various samples, and C. Taussig, P. Mei, and C. Perlov for many consultations and support during this work.

References

  1. 1.
    Boesen GF, Jacobs, JE (1968) ZnO field-effect transistor. Proc IEEE 56:2094–2095Google Scholar
  2. 2.
    Khuri-Yakub BT, Kino GS (1974) A monolithic zinc-oxide-on-silicon convolver. Appl Phys Lett 25:188–190CrossRefGoogle Scholar
  3. 3.
    Mahan, GD (1983) Intrinsic defects in ZnO varistors. J Appl Phys 54:3825–3832CrossRefGoogle Scholar
  4. 4.
    Kudo A, Yanagi H, Ueda K, Hosono H, Kawazoe H, Yano Y (1999) Fabrication of transparent p–n heterojunction thin-film diodes based entirely on oxide semiconductors. Appl Phys Lett 75:2851–2853CrossRefGoogle Scholar
  5. 5.
    Chopra K, Major S, Pandya D (1983) Transparent conductors – a status review. Thin Solid Films 102:1–46CrossRefGoogle Scholar
  6. 6.
    Prins MWJ, Grosse-Holz K, Mller G, Cillessen JM, Giesbers JB (1996) A ferroelectric transparent thin-film transistor. Appl Phys Lett 68:3650–3652CrossRefGoogle Scholar
  7. 7.
    Kawasaki M, Tamura K, Saikusa K, Aita T, Tsukazaki A, Ohtomo A, Jin ZG, Matsumoto Y, Fukumura T, Koinuma H, Ohrnaki Y, Kishimoto S, Ohno Y, Matsukura F, Ohno H, Makino T, Tuan NT, Sun PD, Chia CH, Segawa Y, Tang ZK, Wang GKL (2000) Can ZnO eat market in optoelectronic applications. Ext. Abst. 2000 Int Conf. Solid State Deyices ard Materials, Sendai, l28–129Google Scholar
  8. 8.
    Ohtomo A, Kawaski M (2000) Novel semiconductor technologies of ZnO films towards ultraviolet LEDs and invisible FETs. IEEE Trans Electron E83-C:1614–1617Google Scholar
  9. 9.
    Ohya Y, Niwa T, Ban T, Takahashi Y (2001) Thin-film transistor of ZnO fabricated by chemical solution deposition. Jpn J Appl Phys 40:297–299CrossRefGoogle Scholar
  10. 10.
    Hoffman R (2002) Development, fabrication, and characterization of transparent electronic devices. Masters Thesis, Oregon State UniversityGoogle Scholar
  11. 11.
    Masuda S, Kitamura K, Okumura Y, Miyatake S, Tabata H, Kawai T (2003) Transparent thin-film transistors using ZnO as an active channel layer and their electrical properties. J Appl Phys 93:1624–1630CrossRefGoogle Scholar
  12. 12.
    Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300:1269–1272CrossRefGoogle Scholar
  13. 13.
    Hoffman R, Norris B, Wager J (2003) ZnO-based transparent thin-film transistors. Appl Phys Lett 82:733–735CrossRefGoogle Scholar
  14. 14.
    Nishii J, Hossain FM, Takagi S, Aita T, Saik K, Ohmaki Y, Ohkubo I, Kishimoto S, Ohtomo A, Fukumura T, Matsukura F, Ohno Y, Koinuma H, Ohno H, Kawasaki M (2003) High mobility thin film transistors with transparent ZnO channels. Jpn J Appl Phys 42:L 347–349 Part 2, No. 4ACrossRefGoogle Scholar
  15. 15.
    Carcia PF, McLean RS, Reilly MH, Malajovich I, Sharp KG, Agrawal S, Nunes G Jr (2003) ZnO thin film transistors for flexible electronics. Mat Res Soc Symp Proc 769:H7.2.1Google Scholar
  16. 16.
    Nishii J, Hossain FM, Takagi S, Aita T, Saikusa K, Ohmaki Y, Kishimoto I, Ohtomo A, Fukumura T, Matsukura F, OhnoY, Koinuma H, Ohno H, Kawasaki M (2003) High mobility thin film transistors with transparent ZnO channels. Jpn J Appl Phys 42:347–349CrossRefGoogle Scholar
  17. 17.
    Fortunato E, Hosano H, Granquist C, Wager J (2007) Advances in transparent electronics: From Materials to devices, I, 51(7).Google Scholar
  18. 18.
    Chaing HQ (2003) Development of zinc tin oxide-based transparent thin-film transistors. Master Thesis, Oregon State UniversityGoogle Scholar
  19. 19.
    Chiang HP, Wager JF, Hoffman, RL, Jeong J, Keszler DA (2005) High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl Phys Lett 86: 13503–13505CrossRefGoogle Scholar
  20. 20.
    Carcia PF, McLean RS, Reilly MH, Nunes G (2003) Transparent ZnO thinfilm transistor fabricated by rf magnetron sputtering. Appl Phys Lett 82:1117–1119CrossRefGoogle Scholar
  21. 21.
    Fortunato E, Pimentel A, Pereira L, Goncalves A, Lavareda G, Aguas H, Ferreira I, Carvalho CN, Martins R (2004) High field-effect mobility zinc oxide thin film transistors produced at room temperature. J Non-Cryst Solids 338–340:806–809CrossRefGoogle Scholar
  22. 22.
    Carcia PF, McLean RS, Reilly MH (2005) Oxide engineering of ZnO thin-film transistors for flexible electronics. J Soc Inf Display 13/7:547–550CrossRefGoogle Scholar
  23. 23.
    Bellingeria E, Marréa D, Pellegrinoa L, Pallecchia I, Canub G, Vignoloa M, Berninia C, Siria HS (2005) High mobility ZnO thin film deposition on SrTiO3 and transparent field effect transistor fabrication Superlattices and Microstructures 38:446–454Google Scholar
  24. 24.
    Hwang CS, Park SH, Chu HY (2005) ZnO TFT fabricated at low temperature for application active-matrix display. 12th Int. Display Workshops/Asia Display, p1149–1151Google Scholar
  25. 25.
    Carcia PF, McLean RS, Reilly MH (2006) High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Appl Phys Lett 88:123509–123511CrossRefGoogle Scholar
  26. 26.
    Jackson WB, Hoffman RL, Herman GS (2005) High-performance flexible zinc tin oxide field-effect transistors. Appl Phys Lett 87:193503–193505CrossRefGoogle Scholar
  27. 27.
    Hoffman RL (2006) Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors. Solid-State Electron 50:784–787CrossRefGoogle Scholar
  28. 28.
    Jackson WB, Herman GS, Hoffman RL, Taussig C, Braymen S, Jeffery F, Hauschildt J (2006) Zinc tin oxide transistors on flexible substrates. J Non-Cryst Solids 352:1753–1755CrossRefGoogle Scholar
  29. 29.
    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–492CrossRefGoogle Scholar
  30. 30.
    Yaglioglu B, Yeom HY, Beresford R, Paine DC (2006) A high-mobility amorphous In2O3 – 10 wt% ZnO thin film transistors. Appl Phys Lett 89:062103–062105CrossRefGoogle Scholar
  31. 31.
    Fortunato E, Barquinha P, Pimentel A, Gonçalves A, Marques A, Pereira L, Martins R (2005) Fully transparent ZnO thin-film transistor produced at room temperature. Adv Mat 17: 590–594CrossRefGoogle Scholar
  32. 32.
    Santato C, Manunza I, Bonfiglio A, Ciroira F, Cosseddu P, Zamboni R, Muccini M (2006) Tetracene light-emitting transistors on flexible plastic substrates. Appl Phys Lett 86: 141106–141109CrossRefGoogle Scholar
  33. 33.
    Loi A, Manunza I, Bonfiglio A (2005) Flexible, organic, ion-sensitive field-effect transistor. Appl Phys Lett 86:103512–103514CrossRefGoogle Scholar
  34. 34.
    Bonfiglio A, Mameli F, Sanna O (2003) A completely flexible organic transistor obtained by a one-mask photolithographic process. Appl Phys Lett 82(20):3550–3552CrossRefGoogle Scholar
  35. 35.
    Ohta H, Nomura K, Hiramatsu H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Frontier of transparent oxide semiconductors. Solid-State Electron 47:2261–2267CrossRefGoogle Scholar
  36. 36.
    Fortunato EC, Barquinha PM, Pimentel AC, Gonçalves AM, Marques AJ, Martins RF, Pereira LM (2004) Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl Phys Lett 85:2541–2543CrossRefGoogle Scholar
  37. 37.
    Hosono H, Nomura H, Kamiya T (2005) High performance FET using transparent amorphous oxide semiconductors as channel layer on plastic substrate. 12th Int. Display Workshops/Asia Display IDW/AD05 AMD3-1:251–253Google Scholar
  38. 38.
    Ellmer K (2001) Resitivity of polycrystalline zinc oxide films: Current status and physical limit. J Phys D: Appl Phys 34:3097–3108CrossRefGoogle Scholar
  39. 39.
    Chopra K, Major S, Pandya D (1983) Transparent conductors – a status review. Thin Solid Films 102:1–46CrossRefGoogle Scholar
  40. 40.
    Minami T, Miyata T, Yamamoto T (1998) Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering. Surf Coat Tech 108–109: 583–587CrossRefGoogle Scholar
  41. 41.
    Minami T, Takata S, Sato H, Sonhana H (1995) Properties of transparent zinc stannate conducting films prepared by radio frequency magnetron sputtering. J Vac Sci Technol A 13:1095–1099CrossRefGoogle Scholar
  42. 42.
    Minami T, Sonohara H, Takata S, Sato H (1994) Highly transparent and conductive zinc-stannate thin films prepared by RF magnetron sputtering. Jpn J Appl Phys 33:1693–1696CrossRefGoogle Scholar
  43. 43.
    Wu X, Coutts T, Mulligan W (1997) Properties of transparent conducting oxides formed from CdO and ZnO alloyed with SnO2 and In2O3. J Vac Sci Technol A 15:1057–1062CrossRefGoogle Scholar
  44. 44.
    Young DL, Moutinho H, Yan Y, Coutts TJ (2002) Growth and characterization of radio frequecy magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films. J Appl Phys 92: 310–319CrossRefGoogle Scholar
  45. 45.
    Young DL (2000) Electron transport in zinc stannate (Zn2SnO4). Ph. D. thesis, Colorado School of MinesGoogle Scholar
  46. 46.
    Minami T, Sonohara H, Kakumu T, Takata S (1995) Highly transparent and conductive Zn2In2O5 thin films prepared by RF magnetron sputtering. Jpn J Appl Phys 34:971–974CrossRefGoogle Scholar
  47. 47.
    Van de Walle CG (2000) Hydrogen as a cause of doping in zinc oxide. Phys Rev Lett 85: 1012–1015CrossRefGoogle Scholar
  48. 48.
    Raniero L, Ferreira I, Pimentel A, Goncalves A, Canhola P, Fortunato E, Martins R (2006) Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings. Thin Solid Films 511–512:295–298CrossRefGoogle Scholar
  49. 49.
    Theys B, Sallet V, Jomard F, Lusson A, Rommeluere JF, Teukam Z (2002) Effects of intentionally introduced hydrogen on the electrical properties of ZnO layers grown by metalorganic chemical vapor deposition. J Appl Phys 91:3922–3924CrossRefGoogle Scholar
  50. 50.
    Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2005) Recent progress in processing and properties of ZnO Progress in Materials. Science 50:293–340Google Scholar
  51. 51.
    Van deWalle C, Nequgebauer J (2003) Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423:626–628CrossRefGoogle Scholar
  52. 52.
    Zhang DH, Brodie DE (1995) Photoresponse of polycrystalline ZnO films deposited by r.f. bias sputtering. Thin Solid Films 261:334–339CrossRefGoogle Scholar
  53. 53.
    Zhang DH (1995) Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering. J Phys D: Appl Phys 28:1273–1277CrossRefGoogle Scholar
  54. 54.
    Takahashi Y, Kanamori M, Kondoh A, Minoura H, Ohya Y (1994) Photoconductivity of ultrathin zinc oxide films. Jpn J Appl Phys Part 1, 33:6611–6615CrossRefGoogle Scholar
  55. 55.
    Studenikin SA, Golego N, Cocivera M (2000) Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films. J Appl Phys 87:2413–2421CrossRefGoogle Scholar
  56. 56.
    Xirouchaki C, Kiriakidis G, Pedersen TF, Fritzsche H (1996) Photoreduction and oxidation of as-deposited microcrystalline indium oxide. J Appl Phys 79:9349–9352CrossRefGoogle Scholar
  57. 57.
    Kim H-J, Almanza-Workman M, Chaiken A, Jackson WB, Jeans A, Kwon O, Luo H, Mei P, Perlov C, Taussig C, Jeffrey, F, Braymen S, Hauschildt J (2006) Roll-to-roll fabrication of active-matrix backplanes using self-aligned imprint lithography (SAIL). 6th Int. Meeting Information Display/5th Int. Display Manufacturing Conf. Daegu, Korea, 2006 Digest 1539–1543Google Scholar
  58. 58.
    US Patent 20050176182 (2005)Google Scholar
  59. 59.
    Xia Y, Whitesides GM, (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRefGoogle Scholar
  60. 60.
    Quake SR, Scherer A (2000) From micro- to nanofabrication with soft materials. Science 290:1536–1540CrossRefGoogle Scholar
  61. 61.
    Rogers JA, Nuzzo RG (2005, February) Recent progress in soft lithography. Mater today 8:50–56CrossRefGoogle Scholar
  62. 62.
    Norland Products Inc. www.norlandprod.com
  63. 63.
    Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942CrossRefGoogle Scholar
  64. 64.
    Tate J, Jayaraj MK, Draeseke AD, Ulbrich T, Sleight AW, Vanaja KA, Nagarajan R, Wager JF, Hoffman RL (2002) P-type oxides for use in transparent diodes. Thin Solid Films 411: 119–124CrossRefGoogle Scholar
  65. 65.
    Park S, Keszler DA, Valencia MM, Hoffman RL, Bender JP, Wager JF (2002) Transparent p-type conducting BaCu2S2 films. Appl Phys Lett 80:4293–4295Google Scholar
  66. 66.
    Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H, Hamada N (2000) Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2. J Appl Phys 88: 4159–4163CrossRefGoogle Scholar
  67. 67.
    Nagarajan R, Draeseke AD, Sleight AW, Tate J (2001) P-type conductivity in CuCr1-x MgxO2 films and powders. J Appl Phys 89:8022–8025CrossRefGoogle Scholar
  68. 68.
    Ueda K, Hase T, Yanagi H, Kawazoe H, Hosono H, Ohta H, Orita M, Hirano M (2001) Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition. J Appl Phys, 89:1790–1793CrossRefGoogle Scholar
  69. 69.
    Duan N, Sleigh AW, Jayaraj MK, Tate J (2000) Transparent p-type conducting CuScO2+x films. Appl Phys Lett 77:1325–1326CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Hewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations