Amorphous Silicon: Flexible Backplane and Display Application

  • Kalluri R. Sarma
Part of the Electronic Materials: Science & Technology book series (EMST, volume 11)


Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays. a-Si TFT-LCDs as large as 108diagonal for TV applications have been...


Plastic Substrate Test Display OLED Device Flexible Display Gate Bias Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The contributions of Charles Chanley, Sonia Dodd, Jerry Roush, John Schmidt, and other members of the Honeywell Displays and Graphics Group in the development of flexible AMOLED displays using low-temperature a-Si TFT Backplanes are acknowledged.


  1. 1.
    Young B (2007) A roadmap for flexible displays. In: Proceeding of USDC Flexible Displays & Microelectronics Conference & Exhibit, 5–8 Feb 2007Google Scholar
  2. 2.
    McGoldrick K (2007) A rollable display in every device. In: Proceeding of USDC Flexible Displays & Microelectronics Conference & Exhibit, 5–8 FebruaryGoogle Scholar
  3. 3.
    Paek SH, Kim KL, Seo HS, Jeong YS, Yi SY, lee SY, Choi NB, Kim SH, Kim CD, Chung IJ (2006) 10.1 inch SVGA ultra thin and flexible active matrix electrophoretic display. SID 06 Digest, p 1834Google Scholar
  4. 4.
    Raupp GB, Colaneri N, O’Rourke SM, Kaminski J, Allee DR, Venugopal SM, Bawolek EJ, Loy DE, Moyer C, Angeno SK, O’Brien BP, Bottesch D, Rednour S, Blanchard R, Marrs M, Dailey J, Long K (2006) Flexible display technology in a pilot line manufacturing environment. Army Science Conference, Orlando, FL, 27–30 NovemberGoogle Scholar
  5. 5.
    Raupp G (2007) Active matrix TFT technology development and pilot line manufacturing for reflective and emissive flexible displays. In: Proceeding of USDC Flexible Displays & Microelectronics Conference & Exhibit, 5–8 FebruaryGoogle Scholar
  6. 6.
    Jin DU, Jeong JK, Shin HS, Kim MK, Ahn TK, Kwon SY, Kwack JHo, Kim TW, Mo YG, Chung HK (2006) 5.6-inch Flexible full color top emission AM OLED display on stainless steel foil. SID 06 Digest, p 1855Google Scholar
  7. 7.
    Chwang A, Hewitt R, Urbanik K, Silvernail J, Rajan K, Hack M, Brown J, Lu JP, Shih C, Ho J, Street R, Ramos T, Moro L, Rutherford N, Tognoni K, Anderson B, Huffman D (2006) Full color 100 dpi AM OLED displays on flexible stainless steel substrates. SID 06 Digest, p 1858Google Scholar
  8. 8.
    Long K, Kattamis AZ, Cheng IC, Gleskova H, Wagner S, Sturm JC, Stevenson M, Yu G, O’Regan M (2006) Active matrix amorphous silicon TFT arrays at 180°C on clear plastic substrates for organic light emitting displays. IEEE Trans Electron Dev 53(8):1789CrossRefGoogle Scholar
  9. 9.
    Long K, Kattamis AZ, Cheng IC, Gleskova H, Wagner S, Sturm JC (2006) Stability of amorphous silicon TFTs deposited on clear plastic substrates at 250°C to 280°C. IEEE Electron Dev Lett 27(2):111CrossRefGoogle Scholar
  10. 10.
    Sarma KR, Chanley C, Dodd S, Roush J, Schmidt J, Srdanov G, Stevenson M, Yu G, Wessel R, Innocenzo J, O’Regan M, MacDonald WA, Eveson R, Long K, Gleskova H, Wagner S, Sturm JC (2003) Flexible active matrix OLED using 150°C a-Si TFT backplane. Cockpit Displays X, Proceedings of the SPIE 2003, pp 180–191Google Scholar
  11. 11.
    Hwang TH et al. (2007) 14.3 inch Active matrix-based plastic electrophoretic display using low temperature processes. SID 07 Digest, p 1684Google Scholar
  12. 12.
    MacDonald WA, Mace JM, Polack NP (2002) 45th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, p 482Google Scholar
  13. 13.
    Teonex® is registered trademark of Teijin DuPont Films Japan Limited and licensed to DuPont Teijin Films U.S. Limited PartnershipGoogle Scholar
  14. 14.
    MacDonald WA, Rollins K, Rustin RA, Handa M (2003) Plastic displays – New developments in polyester films for plastic electronics. SID 03 Digest, p 264Google Scholar
  15. 15.
    MacDonald WA, Eveson R, MacKerron D, Adam R, Rollins K, Rustin R, Looney MK, Hashimoto K (2006) The impact of environment on dimensional reproducibility of polyester film during flexible electronics processing. SID 06 Digest, p 414Google Scholar
  16. 16.
    Utsunomiya S et al. (2003) Flexible color AM OLED display fabricated using surface free technology by laser ablation/annealing (SUFTLA™). SID 03 Digest, pp 864–867Google Scholar
  17. 17.
    Asano A, Kinoshita T, Otani N (2003) A plastic 3.8-in low-temperature polycrystalline silicon TFT color LCD panel. SID 03 Digest, pp 988–991Google Scholar
  18. 18.
    Kwon JY, Jung JS, Park KB, Kim JM, Lim H, Lee SY, Kim JM, Noguchi T, Hur JH, Jang J (2006) 2.2 inch qqVGA AM OLED driven by Ultra Low Temperature Poly Silicon (ULTPS) TFT direct fabricated below 200°C. SID 06 Digest, pp 1358–1361Google Scholar
  19. 19.
    Gleskova H, Wagner S (1999) Amorphous silicon thin-film transistors on compliant polyimide foil substrates. IEEE Electron Dev Lett 20(9):473CrossRefGoogle Scholar
  20. 20.
    Gleskova H, Wagner S (2001) DC-gate bias stressing of a-Si:H TFTs fabricated at 150°C on polyimide foil. IEEE Trans Electron Dev 48(8):1667CrossRefGoogle Scholar
  21. 21.
    He S, Nishiki H, Hartzell J, Nakata Y (2000) Low temperature PECVD a-Si TFT for plastic substrate. SID 2000 Digest, pp 278–281Google Scholar
  22. 22.
    French I, George D, Boerefijn I, Chuiton E, Gomez G, Mazel F, Trestour C, Kretz T (2007) Flexible displays made by the EPLARTM process in a factory. In: Proceeding of USDC Flexible Displays & Microelectronics Conference & Exhibit, 5–8 FebruaryGoogle Scholar
  23. 23.
    Gundlach DJ, Kuo DJ, Nelson CC, Jackson TN (1999) organic thin film transistors with field effect mobility >2 Cm2/V-s, IEEE Electron device Lett., pp 164–165Google Scholar
  24. 24.
    Burns SE et al. (2006) A flexible plastic SVGA e-paper display. SID 06 Digest, p 74Google Scholar
  25. 25.
    Hirao T, Furuta M, Furuta H, Matsuda T, Hiramatsu T, Hokari H, Yoshida M (2006) High mobility top-gate zinc oxide thin film transistors (ZnO-TFTs) for active matrix liquid crystal displays. SID 06 Digest, pp 18–21Google Scholar
  26. 26.
    A. Sazonov A, Stryahilev D, Nathan A, (2002) Low-temperature a-Si:H TFT on plastic films: materials and fabrication aspects, International Conference on Microelectronics, pp 525–528Google Scholar
  27. 27.
    Won SH, Hur JH, Lee CB, Nam HC, Chung JK, Jang J (2004) Hydrogenated amorphous silicon thin film transistors on plastic with organic gate insulator, IEEE Electron device Letters, 25, pp 132–134Google Scholar
  28. 28.
    Sarma KR (2004) a-Si TFT OLED fabricated on low-temperature flexible plastic substrate. Proceeding of the 2004 MRS Spring Conference, San Francisco, CAGoogle Scholar
  29. 29.
    Hasumi T, Takasugi S, Kanoh K, Kobayashi Y (2006) New OLED pixel circuit and driving method to suppress threshold voltage shift of a-Si:H TFT. SID 06 Digest, p 1547Google Scholar
  30. 30.
    Chaji GR, Nathan A (2006) A stable voltage programmed pixel circuit for a-Si:H AM OLED displays. J Display Technol 2(4):347CrossRefGoogle Scholar
  31. 31.
    Khan A, Shiyanovskaya I, Schneider T, Doane JW (2006) Recent progress in flexible drapable reflective cholesteric displays. SID 06 Digest, p 1728Google Scholar
  32. 32.
    McCreary M (2007) Advances in microencapsulated electrophoretic displays. In: Proceeding of USDC Flexible Displays & Microelectronics Conference & Exhibit, 5–8 FebruaryGoogle Scholar
  33. 33.
    Graff G, Burrows PE, Williford RE, Praino RF (2005) Barrier layer technology for flexible displays. In: Crawford GP (ed) Flexible Flat Panel Displays. Wiley, NYGoogle Scholar
  34. 34.
    Moro M, Chu X, Hirayama H, Krajewski T, Visser RJ (2006) A mass manufacturing process for Barix encapsulation of OLED displays. IMID/IDMC, 23 AugustGoogle Scholar
  35. 35.
    Sanford JL, Libsch FR (2003) TFT AM OLED pixel circuits and driving methods. SID 03 Digest, p 10Google Scholar
  36. 36.
    Sarma KR, Roush J, Schmidt J, Chanley C, Dodd S (2006) Flexible active matrix organic light emitting diode (AM OLED) displays. ASID 06 DigestGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Honeywell InternationalPhoenixUSA

Personalised recommendations