Skip to main content

Low-temperature Amorphous and Nanocrystalline Silicon Materials and Thin-film Transistors

  • Chapter
  • First Online:
Flexible Electronics

Part of the book series: Electronic Materials: Science & Technology ((EMST,volume 11))

Abstract

Low-temperature processing and characterization of amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si) materials and devices are reviewed. An overview of silicon-based low-temperature thin-film dielectrics is given in the context of thin-film transistor (TFT) device operation. The low-temperature growth and synthesis of these materials are also presented and compared to conventionally fabricated high-temperature processed devices. The effect of using nc-Si contacts on a-Si:H TFTs and the stability of nc-Si TFTs is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fruehauf N, Chalamala BR, Gnade BE, Jang J (2004) Flexible Electronics 2004 – Materials and Device Technology, vol 814. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA

    Google Scholar 

  2. Sheats JR (2002) Roll-to-roll manufacturing of thin film electronics, Proc SPIE 4688: 240–248

    Article  CAS  Google Scholar 

  3. Allen K (2004) Reel to real: Prospects for flexible displays, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics 2004 – Materials and Device Technology, vol 814. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp I1.1.1–I1.1.3

    Google Scholar 

  4. Ichikawa Y et al. (2001) Production technology for amorphous silicon-based flexible solar cells, Solar Energy Mater Solar Cells 66:107–115

    Article  CAS  Google Scholar 

  5. Kim BS et al. (2004) Developments of transmissive a-Si TFT-LCD using low temperature processes on plastic substrate, In: SID 2004 International Symposium Digest, pp 19–21

    Google Scholar 

  6. McDermott J, Brantner PC (2003) Thin-film solid-state lithium battery for body worn electronics, In: Shur MS, Wilson PM, Urban R (eds) Electronics on Unconventional Substrates – Electrotextiles and Giant-Area Flexible Circuits, vol 736. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp D5.1.1–D5.1.9

    Google Scholar 

  7. Kelley TW et al. (2003) High performance organic thin film transistors, In: Blom PWM, Greenham NC, Dimitrakopoulos CD, Frisbie CD (eds) Organic and Polymeric Materials and Devices, vol 771. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp L6.5.1–L6.5.11

    Google Scholar 

  8. Reuss R et al. (2005) Macroelectronics: Perspectives on technology and applications, Proc IEEE 93:1239

    Article  CAS  Google Scholar 

  9. Lewis JS, Weaver MS (2004) Thin-film permeation-barrier technology for flexible organic light-emitting devices, IEEE J Selected Top Quantum Electron 10:45–57

    Article  CAS  Google Scholar 

  10. Kelley T (2006) High-performance pentacene transistors, In: Klauk H (ed) Organic Electronics, Wiley-VCH, Weinheim, pp 35–57

    Google Scholar 

  11. Wagner S, Gleskova H, Cheng IC, Wu M (2003) Silicon for thin-film transistors, Thin Solid Films 430:15–19

    Article  CAS  Google Scholar 

  12. Plichta A, Weber A, Habeck A (2003) Ultra thin flexible glass substrates, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics – Materials and Device Technology, vol 769. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp H9.1.1–H9.1.10

    Google Scholar 

  13. Afentakis T, Hatalis MK, Voutsas AT, Hartzell JW (2003) High performance polysilicon circuits on thin metal foils, Proc SPIE 5004:122–126

    Article  CAS  Google Scholar 

  14. Inoue S, Utsunomiya S, Saeki T, Shimoda T (2002) Surface-free technology by laser annealing (SUFTLA) and its application to poly-Si TFT-LCDs on plastic film with integrated drivers, IEEE Trans Electron Dev 49:1353–1360

    Article  CAS  Google Scholar 

  15. Jongerden GJ (2003) Monolithically series integrated flexible PV modules manufactured on commodity polymer substrates, Proceeding of Third World Conference on Photovoltaic Energy Conversion, pp 2109–2111

    Google Scholar 

  16. Srinivasan E, Lloyd DA, Parsons GN (1997) Dominant monohydride bonding in hydrogenated amorphous silicon thin films formed by plasma enhanced CVD at room temperature, J Vac Sci Technol A 15:77

    Article  CAS  Google Scholar 

  17. Gleskova H, Wagner S, Suo Z (1998) a-Si:H TFTs made on polyimide foil by PECVD at 150°C. Mater Res Soc Symp Proc 508:73

    Article  CAS  Google Scholar 

  18. Parsons GN, Yang CS, Klein TM, Smith L (1999) Surface reactions for low temperature (110°C) amorphous silicon TFT formation on transparent plastic, Mater Res Soc Symp Proc 507:19

    Article  CAS  Google Scholar 

  19. Robertson J (2000) Deposition mechanism of hydrogenated amorphous silicon, J Appl Phys 87:2608–2617

    Article  CAS  Google Scholar 

  20. Perrin J (1995) Reactor design for a-Si:H deposition, In: Bruno G, Capezzuto P, Madan A (eds) Plasma Deposition of Amorphous-Based Materials, Academic Press, San Diego, CA, pp 177–241

    Chapter  Google Scholar 

  21. Sazonov A, Nathan A (2000) A 120°C fabrication technology for a-Si:H thin film transistors on flexible polyimide substrates, J Vac Sci Technol A 18:780–782

    Article  CAS  Google Scholar 

  22. Nathan A, Striakhilev D, Servati P, Sakariya K, Sazonov A, Alexander S, Tao S, Lee CH, Kumar A, Sambandan S, Jafarabadiashtiani S, Vygranenko Y, Chan IW (2004) a-Si AMOLED display backplanes on flexible substrates, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics 2004 – Materials and Device Technology, vol 814. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp I3.1.1–I3.1.12

    Google Scholar 

  23. Sazonov A, Striakhilev D, Nathan A (2000) Materials optimization for TFTs fabricated at low temperature on plastic substrate, J Non-Cryst Solids 266–269:1329–1334

    Article  Google Scholar 

  24. Lee CH, Sazonov A, Nathan A (2004) Low temperature (75°C) hydrogenated nanocrystalline silicon films grown by conventional plasma enhanced chemical vapor deposition for thin film transistors, In: Ganguly G, Kondo M, Schiff EA, Carius R, Biswas R (eds) Amorphous and Nanocrystalline Silicon Science and Technology – 2004, vol 808. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp A4.17.1–A4.17.6

    Google Scholar 

  25. McArthur C, Meitine M, Sazonov A (2003) Optimization of 75°C amorphous silicon nitride for TFTs on plastics, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics – Materials and Device Technology, vol 769. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp 303–308

    Google Scholar 

  26. Meitine M, Sazonov A (2003) Low temperature PECVD silicon oxide for devices and circuits on flexible substrates, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics – Materials and Device Technology, vol 769. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp 165–170

    Google Scholar 

  27. Stryahilev D, Sazonov A, Nathan A (2002) Amorphous silicon nitride deposited at 120°C for OLED-TFT arrays on plastic substrates, J Vac Sci Technol A 20:1087–1090

    Article  CAS  Google Scholar 

  28. Sazonov A, Nathan A (2000) 120°C Fabrication technology for a-Si:H thin film transistors on flexible polyimide substrates, J Vac Sci Technol A18:780–782

    Article  CAS  Google Scholar 

  29. Kuo Y (2004) Deposition of dielectric thin films for a-Si:H TFT. In: Kuo Y (ed) Thin Film Transistors, Materials and Processes, vol I. Kluwer Academic Publishers, Boston, MA, pp 241–271

    Chapter  Google Scholar 

  30. Meitine M, Sazonov A (2003) Low temperature PECVD silicon oxide for devices and circuits on flexible substrates, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics – Materials and Device Technology, vol 769. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp 165–170

    Google Scholar 

  31. Kattamis A, Cheng IC, Allen S, Wagner S (2004) Hydrogen in ultralow temperature SiO2 for nanocrystalline silicon thin film transistors, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics 2004 – Materials and Device Technology, vol 814. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp I10.14.1–I10.14.6

    Google Scholar 

  32. Rashid R, Flewitt AJ, Grambole D, Kreibig U, Robertson J, Milne WI (2001) High quality growth of SiO2 at 80°C by electron cyclotron resonance (ECR) for thin film transistors, In: Im JS, Werner JH, Uchikoga S, Felter T, Voutsas T, Kim HJ (eds) Advanced Materials and Devices for Large-Area Electronics, vol 695E. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp D13.1.1–D13.1.6

    Google Scholar 

  33. Yang CS, Smith LL, Artur CB, Parsons G (2000) Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates, J Vac Sci Tech B18:683.

    Article  CAS  Google Scholar 

  34. Sazonov A, Nathan A, Striakhilev D (2000) Materials optimization for thin film transistors fabricated at low temperature on plastic substrate, J Non-Cryst Solids 266–269:1329

    Article  Google Scholar 

  35. Gleskova H, Wagner S, Gašparik V, Kováč P (2001) 150°C Amorphous silicon thin-film transistor technology for polyimide substrates, J Electrochem Soc 148:G370

    Article  CAS  Google Scholar 

  36. Revesz AG, Anwand W, Brauer G, Hughes HL, Skorupa W (2002) Density gradient in SiO2 films on silicon as revealed by positron annihilation spectroscopy, Appl Surf Sci 194:101

    Article  CAS  Google Scholar 

  37. Hsieh SW, Chang CY, Hsu SC (1993) Characteristics of low-temperature and low-energy plasma-enhanced chemical vapor deposited SiO2. J Appl Phys 74:2638

    Article  CAS  Google Scholar 

  38. Martinu L, Poitras D (2000) Plasma deposition of optical films and coatings: A review, J Vac Sci Technol A18:2619

    Article  CAS  Google Scholar 

  39. Pereyra I, Alayo MI (1997) High quality low temperature DPECVD silicon dioxide, J Non-Cryst Solids 212:225

    Article  CAS  Google Scholar 

  40. Han SS, Ceiler M, Bidstrup SA, Kohl P (1994) Modeling the properties of PECVD silicon dioxide films using optimized back-propagation neural networks, IEEE Trans Comp Pack Manufac Technol A17:174

    Article  CAS  Google Scholar 

  41. Street RA (1991) Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge, pp 18–61

    Book  Google Scholar 

  42. Nathan A, Servati P, Karim KS, Striakhilev D, Sazonov A (2004) Device physics, compact modeling, and circuit applications of a-Si:H TFTs, In: Kuo Y (ed) Thin Film Transistors, Materials and Processes, vol I. Kluwer Academic Publishers, Boston, MA, pp 79–181

    Chapter  Google Scholar 

  43. Streetman BG, Banerjee S (2000) Solid State Electronic Devices, Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  44. Sazonov A, McArthur C (2004) Sub-100ºC a-Si:H TFTs on plastic substrates with silicon nitride gate dielectrics, J Vac Sci Technol A22:2052–2055

    Article  CAS  Google Scholar 

  45. Charania T, Sazonov A, Nathan A (2000) Use of 120°C n+-μc-Si:H in low temperature TFT fabrication, In: Kuo J (ed) Thin Film Transistor Technologies V, vol 2000-31. Proceeding of the Electrochemical Society, Pennington, NJ, pp 4–62

    Google Scholar 

  46. Meitine M, Sazonov A (2004) Top gate TFT for large area electronics, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics 2004 – Materials and Device Technology, vol 814. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp I6.12.1–I6.12.6

    Google Scholar 

  47. Lee CH, Stryahilev D, Nathan A (2004) Intrinsic and doped μc-Si:H TFT layers using 13.56 MHz PECVD at 250ºC. In: Ganguly G, Kondo M, Schiff EA, Carius R, Biswas R (eds) Amorphous and Nanocrystalline Silicon Science and Technology – 2004, vol 808. Materials Research Society Symposia Proceedings, Pittsburgh, PA, pp A4.14.1–A4.14.6

    Google Scholar 

  48. Umezu I, Kuwamura T, Kitamura K, Tsuchida T, Maeda K (1998) Effect of plasma treatment on the density of defects at an amorphous Si:H-insulator interface, J Appl Phys 84:1371–1377

    Article  CAS  Google Scholar 

  49. Nathan A, Striakhilev D, Chaji R, Ashtiani S, Lee CH, Sazonov A, Robertson J, Milne W (2006) Backplane requirements for active matrix organic light-emitting diode displays, MRS Symp Proc 910:373–387

    Article  Google Scholar 

  50. Lee CH, Sazonov A, Nathan A, Robertson J (2006) Directly deposited nanocrystalline silicon thin-film transistors with ultra high mobilities, Appl Phys Lett 89:252101–252103

    Article  Google Scholar 

  51. Powell MJ, van Berkel C, Hughes JR (1989) Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors, Appl Phys Lett 54:1323

    Article  CAS  Google Scholar 

  52. Gleskova H, Wagner S (2001) DC-gate-bias stressing of a-Si :H TFTs fabricated at 150°C on polyimide foil, IEEE Trans Electron Dev 48:1667–1671

    Article  CAS  Google Scholar 

  53. Lee CH, Striakhilev D, Nathan A (2007) Stability of nc-Si:H TFTs with silicon nitride gate dielectric, IEEE Electron Dev Lett 54:45–51

    CAS  Google Scholar 

  54. Esmaeili-Rad MR, Sazonov A, Nathan A (2007) Absence of defect state creation in nanocrystalline silicon thin film transistors deduced from constant current stress measurements, Appl Phys Lett 91:113511

    Article  Google Scholar 

  55. Jahinuzzaman SM, Sultana A, Sakariya K, Servati P, Nathan A (2005) Threshold voltage instability of amorphous silicon thin-film transistors under constant current stress, Appl Phys Lett 87:023502

    Article  Google Scholar 

  56. Jeong Y, Nagashima D, Kuwano H, Nouda1 T, Hamada H (2002) Effects of various hydrogenation processes on bias-stress-induced degradation in p-channel polysilicon thin film transistors, Jpn J Appl Phys 41:5048–5054

    Article  CAS  Google Scholar 

  57. Yuan HC, Celler GK, Ma Z (2007) Observation of threshold-voltage instability in single-crystal silicon TFTs on flexible plastic substrate, IEEE Electron Dev Lett 28:590–592

    Article  CAS  Google Scholar 

  58. Matsui T, Matsuda A, Kondo M (2004) High-Rate Plasma Process for Microcrystalline Silicon: Over 9% Efficiency Single Junction Solar Cells, In: Ganguly G, Kondo M, Schiff EA, Carius R, Biswas R (eds) Amorphous and Nanocrystalline Silicon Science and Technology – 2004, p.A8.1.1. Materials Research Society Symposia Proceedings 808, Warrendale, PA

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sazonov, A., Striakhilev, D., Nathan, A. (2009). Low-temperature Amorphous and Nanocrystalline Silicon Materials and Thin-film Transistors. In: Wong, W.S., Salleo, A. (eds) Flexible Electronics. Electronic Materials: Science & Technology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74363-9_3

Download citation

Publish with us

Policies and ethics