Advertisement

Low-temperature Amorphous and Nanocrystalline Silicon Materials and Thin-film Transistors

  • Andrei Sazonov
  • Denis Striakhilev
  • Arokia Nathan
Chapter
Part of the Electronic Materials: Science & Technology book series (EMST, volume 11)

Abstract

Low-temperature processing and characterization of amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si) materials and devices are reviewed. An overview of silicon-based low-temperature thin-film dielectrics is given in the context of thin-film transistor (TFT) device operation. The low-temperature growth and synthesis of these materials are also presented and compared to conventionally fabricated high-temperature processed devices. The effect of using nc-Si contacts on a-Si:H TFTs and the stability of nc-Si TFTs is reviewed.

Keywords

Gate Dielectric Plasma Enhance Chemical Vapor Deposition Radio Frequency Magnetron Charge Trapping Flexible Electronic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fruehauf N, Chalamala BR, Gnade BE, Jang J (2004) Flexible Electronics 2004 – Materials and Device Technology, vol 814. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USAGoogle Scholar
  2. 2.
    Sheats JR (2002) Roll-to-roll manufacturing of thin film electronics, Proc SPIE 4688: 240–248CrossRefGoogle Scholar
  3. 3.
    Allen K (2004) Reel to real: Prospects for flexible displays, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics 2004 – Materials and Device Technology, vol 814. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp I1.1.1–I1.1.3Google Scholar
  4. 4.
    Ichikawa Y et al. (2001) Production technology for amorphous silicon-based flexible solar cells, Solar Energy Mater Solar Cells 66:107–115CrossRefGoogle Scholar
  5. 5.
    Kim BS et al. (2004) Developments of transmissive a-Si TFT-LCD using low temperature processes on plastic substrate, In: SID 2004 International Symposium Digest, pp 19–21Google Scholar
  6. 6.
    McDermott J, Brantner PC (2003) Thin-film solid-state lithium battery for body worn electronics, In: Shur MS, Wilson PM, Urban R (eds) Electronics on Unconventional Substrates – Electrotextiles and Giant-Area Flexible Circuits, vol 736. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp D5.1.1–D5.1.9Google Scholar
  7. 7.
    Kelley TW et al. (2003) High performance organic thin film transistors, In: Blom PWM, Greenham NC, Dimitrakopoulos CD, Frisbie CD (eds) Organic and Polymeric Materials and Devices, vol 771. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp L6.5.1–L6.5.11Google Scholar
  8. 8.
    Reuss R et al. (2005) Macroelectronics: Perspectives on technology and applications, Proc IEEE 93:1239CrossRefGoogle Scholar
  9. 9.
    Lewis JS, Weaver MS (2004) Thin-film permeation-barrier technology for flexible organic light-emitting devices, IEEE J Selected Top Quantum Electron 10:45–57CrossRefGoogle Scholar
  10. 10.
    Kelley T (2006) High-performance pentacene transistors, In: Klauk H (ed) Organic Electronics, Wiley-VCH, Weinheim, pp 35–57Google Scholar
  11. 11.
    Wagner S, Gleskova H, Cheng IC, Wu M (2003) Silicon for thin-film transistors, Thin Solid Films 430:15–19CrossRefGoogle Scholar
  12. 12.
    Plichta A, Weber A, Habeck A (2003) Ultra thin flexible glass substrates, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics – Materials and Device Technology, vol 769. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp H9.1.1–H9.1.10Google Scholar
  13. 13.
    Afentakis T, Hatalis MK, Voutsas AT, Hartzell JW (2003) High performance polysilicon circuits on thin metal foils, Proc SPIE 5004:122–126CrossRefGoogle Scholar
  14. 14.
    Inoue S, Utsunomiya S, Saeki T, Shimoda T (2002) Surface-free technology by laser annealing (SUFTLA) and its application to poly-Si TFT-LCDs on plastic film with integrated drivers, IEEE Trans Electron Dev 49:1353–1360CrossRefGoogle Scholar
  15. 15.
    Jongerden GJ (2003) Monolithically series integrated flexible PV modules manufactured on commodity polymer substrates, Proceeding of Third World Conference on Photovoltaic Energy Conversion, pp 2109–2111Google Scholar
  16. 16.
    Srinivasan E, Lloyd DA, Parsons GN (1997) Dominant monohydride bonding in hydrogenated amorphous silicon thin films formed by plasma enhanced CVD at room temperature, J Vac Sci Technol A 15:77CrossRefGoogle Scholar
  17. 17.
    Gleskova H, Wagner S, Suo Z (1998) a-Si:H TFTs made on polyimide foil by PECVD at 150°C. Mater Res Soc Symp Proc 508:73CrossRefGoogle Scholar
  18. 18.
    Parsons GN, Yang CS, Klein TM, Smith L (1999) Surface reactions for low temperature (110°C) amorphous silicon TFT formation on transparent plastic, Mater Res Soc Symp Proc 507:19CrossRefGoogle Scholar
  19. 19.
    Robertson J (2000) Deposition mechanism of hydrogenated amorphous silicon, J Appl Phys 87:2608–2617CrossRefGoogle Scholar
  20. 20.
    Perrin J (1995) Reactor design for a-Si:H deposition, In: Bruno G, Capezzuto P, Madan A (eds) Plasma Deposition of Amorphous-Based Materials, Academic Press, San Diego, CA, pp 177–241CrossRefGoogle Scholar
  21. 21.
    Sazonov A, Nathan A (2000) A 120°C fabrication technology for a-Si:H thin film transistors on flexible polyimide substrates, J Vac Sci Technol A 18:780–782CrossRefGoogle Scholar
  22. 22.
    Nathan A, Striakhilev D, Servati P, Sakariya K, Sazonov A, Alexander S, Tao S, Lee CH, Kumar A, Sambandan S, Jafarabadiashtiani S, Vygranenko Y, Chan IW (2004) a-Si AMOLED display backplanes on flexible substrates, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics 2004 – Materials and Device Technology, vol 814. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp I3.1.1–I3.1.12Google Scholar
  23. 23.
    Sazonov A, Striakhilev D, Nathan A (2000) Materials optimization for TFTs fabricated at low temperature on plastic substrate, J Non-Cryst Solids 266–269:1329–1334CrossRefGoogle Scholar
  24. 24.
    Lee CH, Sazonov A, Nathan A (2004) Low temperature (75°C) hydrogenated nanocrystalline silicon films grown by conventional plasma enhanced chemical vapor deposition for thin film transistors, In: Ganguly G, Kondo M, Schiff EA, Carius R, Biswas R (eds) Amorphous and Nanocrystalline Silicon Science and Technology – 2004, vol 808. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp A4.17.1–A4.17.6Google Scholar
  25. 25.
    McArthur C, Meitine M, Sazonov A (2003) Optimization of 75°C amorphous silicon nitride for TFTs on plastics, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics – Materials and Device Technology, vol 769. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp 303–308Google Scholar
  26. 26.
    Meitine M, Sazonov A (2003) Low temperature PECVD silicon oxide for devices and circuits on flexible substrates, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics – Materials and Device Technology, vol 769. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp 165–170Google Scholar
  27. 27.
    Stryahilev D, Sazonov A, Nathan A (2002) Amorphous silicon nitride deposited at 120°C for OLED-TFT arrays on plastic substrates, J Vac Sci Technol A 20:1087–1090CrossRefGoogle Scholar
  28. 28.
    Sazonov A, Nathan A (2000) 120°C Fabrication technology for a-Si:H thin film transistors on flexible polyimide substrates, J Vac Sci Technol A18:780–782CrossRefGoogle Scholar
  29. 29.
    Kuo Y (2004) Deposition of dielectric thin films for a-Si:H TFT. In: Kuo Y (ed) Thin Film Transistors, Materials and Processes, vol I. Kluwer Academic Publishers, Boston, MA, pp 241–271CrossRefGoogle Scholar
  30. 30.
    Meitine M, Sazonov A (2003) Low temperature PECVD silicon oxide for devices and circuits on flexible substrates, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics – Materials and Device Technology, vol 769. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp 165–170Google Scholar
  31. 31.
    Kattamis A, Cheng IC, Allen S, Wagner S (2004) Hydrogen in ultralow temperature SiO2 for nanocrystalline silicon thin film transistors, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics 2004 – Materials and Device Technology, vol 814. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp I10.14.1–I10.14.6Google Scholar
  32. 32.
    Rashid R, Flewitt AJ, Grambole D, Kreibig U, Robertson J, Milne WI (2001) High quality growth of SiO2 at 80°C by electron cyclotron resonance (ECR) for thin film transistors, In: Im JS, Werner JH, Uchikoga S, Felter T, Voutsas T, Kim HJ (eds) Advanced Materials and Devices for Large-Area Electronics, vol 695E. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp D13.1.1–D13.1.6Google Scholar
  33. 33.
    Yang CS, Smith LL, Artur CB, Parsons G (2000) Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates, J Vac Sci Tech B18:683.CrossRefGoogle Scholar
  34. 34.
    Sazonov A, Nathan A, Striakhilev D (2000) Materials optimization for thin film transistors fabricated at low temperature on plastic substrate, J Non-Cryst Solids 266–269:1329CrossRefGoogle Scholar
  35. 35.
    Gleskova H, Wagner S, Gašparik V, Kováč P (2001) 150°C Amorphous silicon thin-film transistor technology for polyimide substrates, J Electrochem Soc 148:G370CrossRefGoogle Scholar
  36. 36.
    Revesz AG, Anwand W, Brauer G, Hughes HL, Skorupa W (2002) Density gradient in SiO2 films on silicon as revealed by positron annihilation spectroscopy, Appl Surf Sci 194:101CrossRefGoogle Scholar
  37. 37.
    Hsieh SW, Chang CY, Hsu SC (1993) Characteristics of low-temperature and low-energy plasma-enhanced chemical vapor deposited SiO2. J Appl Phys 74:2638CrossRefGoogle Scholar
  38. 38.
    Martinu L, Poitras D (2000) Plasma deposition of optical films and coatings: A review, J Vac Sci Technol A18:2619CrossRefGoogle Scholar
  39. 39.
    Pereyra I, Alayo MI (1997) High quality low temperature DPECVD silicon dioxide, J Non-Cryst Solids 212:225CrossRefGoogle Scholar
  40. 40.
    Han SS, Ceiler M, Bidstrup SA, Kohl P (1994) Modeling the properties of PECVD silicon dioxide films using optimized back-propagation neural networks, IEEE Trans Comp Pack Manufac Technol A17:174CrossRefGoogle Scholar
  41. 41.
    Street RA (1991) Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge, pp 18–61CrossRefGoogle Scholar
  42. 42.
    Nathan A, Servati P, Karim KS, Striakhilev D, Sazonov A (2004) Device physics, compact modeling, and circuit applications of a-Si:H TFTs, In: Kuo Y (ed) Thin Film Transistors, Materials and Processes, vol I. Kluwer Academic Publishers, Boston, MA, pp 79–181CrossRefGoogle Scholar
  43. 43.
    Streetman BG, Banerjee S (2000) Solid State Electronic Devices, Prentice Hall, Upper Saddle River, NJGoogle Scholar
  44. 44.
    Sazonov A, McArthur C (2004) Sub-100ºC a-Si:H TFTs on plastic substrates with silicon nitride gate dielectrics, J Vac Sci Technol A22:2052–2055CrossRefGoogle Scholar
  45. 45.
    Charania T, Sazonov A, Nathan A (2000) Use of 120°C n+-μc-Si:H in low temperature TFT fabrication, In: Kuo J (ed) Thin Film Transistor Technologies V, vol 2000-31. Proceeding of the Electrochemical Society, Pennington, NJ, pp 4–62Google Scholar
  46. 46.
    Meitine M, Sazonov A (2004) Top gate TFT for large area electronics, In: Fruehauf N, Chalamala BR, Gnade BE, Jang J (eds) Flexible Electronics 2004 – Materials and Device Technology, vol 814. Materials Research Society Symposia Proceedings, Pittsburgh, PA, USA, pp I6.12.1–I6.12.6Google Scholar
  47. 47.
    Lee CH, Stryahilev D, Nathan A (2004) Intrinsic and doped μc-Si:H TFT layers using 13.56 MHz PECVD at 250ºC. In: Ganguly G, Kondo M, Schiff EA, Carius R, Biswas R (eds) Amorphous and Nanocrystalline Silicon Science and Technology – 2004, vol 808. Materials Research Society Symposia Proceedings, Pittsburgh, PA, pp A4.14.1–A4.14.6Google Scholar
  48. 48.
    Umezu I, Kuwamura T, Kitamura K, Tsuchida T, Maeda K (1998) Effect of plasma treatment on the density of defects at an amorphous Si:H-insulator interface, J Appl Phys 84:1371–1377CrossRefGoogle Scholar
  49. 49.
    Nathan A, Striakhilev D, Chaji R, Ashtiani S, Lee CH, Sazonov A, Robertson J, Milne W (2006) Backplane requirements for active matrix organic light-emitting diode displays, MRS Symp Proc 910:373–387CrossRefGoogle Scholar
  50. 50.
    Lee CH, Sazonov A, Nathan A, Robertson J (2006) Directly deposited nanocrystalline silicon thin-film transistors with ultra high mobilities, Appl Phys Lett 89:252101–252103CrossRefGoogle Scholar
  51. 51.
    Powell MJ, van Berkel C, Hughes JR (1989) Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors, Appl Phys Lett 54:1323CrossRefGoogle Scholar
  52. 52.
    Gleskova H, Wagner S (2001) DC-gate-bias stressing of a-Si :H TFTs fabricated at 150°C on polyimide foil, IEEE Trans Electron Dev 48:1667–1671CrossRefGoogle Scholar
  53. 53.
    Lee CH, Striakhilev D, Nathan A (2007) Stability of nc-Si:H TFTs with silicon nitride gate dielectric, IEEE Electron Dev Lett 54:45–51Google Scholar
  54. 54.
    Esmaeili-Rad MR, Sazonov A, Nathan A (2007) Absence of defect state creation in nanocrystalline silicon thin film transistors deduced from constant current stress measurements, Appl Phys Lett 91:113511CrossRefGoogle Scholar
  55. 55.
    Jahinuzzaman SM, Sultana A, Sakariya K, Servati P, Nathan A (2005) Threshold voltage instability of amorphous silicon thin-film transistors under constant current stress, Appl Phys Lett 87:023502CrossRefGoogle Scholar
  56. 56.
    Jeong Y, Nagashima D, Kuwano H, Nouda1 T, Hamada H (2002) Effects of various hydrogenation processes on bias-stress-induced degradation in p-channel polysilicon thin film transistors, Jpn J Appl Phys 41:5048–5054CrossRefGoogle Scholar
  57. 57.
    Yuan HC, Celler GK, Ma Z (2007) Observation of threshold-voltage instability in single-crystal silicon TFTs on flexible plastic substrate, IEEE Electron Dev Lett 28:590–592CrossRefGoogle Scholar
  58. 58.
    Matsui T, Matsuda A, Kondo M (2004) High-Rate Plasma Process for Microcrystalline Silicon: Over 9% Efficiency Single Junction Solar Cells, In: Ganguly G, Kondo M, Schiff EA, Carius R, Biswas R (eds) Amorphous and Nanocrystalline Silicon Science and Technology – 2004, p.A8.1.1. Materials Research Society Symposia Proceedings 808, Warrendale, PAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrei Sazonov
  • Denis Striakhilev
  • Arokia Nathan

There are no affiliations available

Personalised recommendations