Advertisement

Substrates and Thin-Film Barrier Technology for Flexible Electronics

  • Ahmet Gün Erlat
  • Min Yan
  • Anil R. Duggal
Chapter
Part of the Electronic Materials: Science & Technology book series (EMST, volume 11)

Introduction

The term “flexible electronics” encompasses a wide array of applications such as flexible displays, low-cost and/or large-area sensors, conformal lighting, and solar cells to name a few, with one common ingredient: the ability to fabricate electronic and optoelectronic devices on nonrigid substrates such as plastic films, metal foil, or thin glass, without losing the functionality of the devices during operation. Other terms often used to convey this concept include “printable electronics”, “macroelectronics,” and “organic electronics.” The promise of flexible electronics lies in the potential for building large-area electronic devices with much lower cost than possible with conventional silicon-based technology [1]. The technologies being developed to enable this all revolve around building devices using low-cost printing techniques that are compatible with high-volume “roll-to-roll” manufacturing. Example technologies that are potentially compatible with low-cost...

Keywords

Plasma Enhance Chemical Vapor Deposition Plastic Substrate Water Vapor Transmission Rate Barrier Film Barrier Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918CrossRefGoogle Scholar
  2. 2.
    Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Bredas JL, Logdlund M, Salaneck WR (1999) Electroluminescence in conjugated polymers. Nature 397:121–128CrossRefGoogle Scholar
  3. 3.
    Forrest SR (2000) Active optoelectronics using thin-film organic semiconductors. IEEE J Select Topics Quantum Electron 6:1072–1083CrossRefGoogle Scholar
  4. 4.
    Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185CrossRefGoogle Scholar
  5. 5.
    Yu G, Gao J, Hummelen J, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270: 1789–1791CrossRefGoogle Scholar
  6. 6.
    Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376: 498–500CrossRefGoogle Scholar
  7. 7.
    Lovinger AJ, Rothberg LJ (1996) Electrically active organic and polymeric materials for thin-film-transistor technologies. J Mater Res 11:1581–1592CrossRefGoogle Scholar
  8. 8.
    Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P (2001) Paper-like electronic displays: Large-area, rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci 98:4835–4840Google Scholar
  9. 9.
    Snow ES, Novak JP, Campbell PM, Park D (2003) Random networks of carbon nanotubes as an electronic material. Appl Phys Lett 82:2145–2147CrossRefGoogle Scholar
  10. 10.
    Duan X, Niu C, Sahl V, Chen J, Parce JW, Empedocles S, Goldman JL (2003) High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425:274–278CrossRefGoogle Scholar
  11. 11.
    Mitzi DB, Kosbar LL, Murray CE, Copel M, Afzali A (2004) High-mobility ultrathin semiconducting films prepared by spin coating. Nature 428:299–302CrossRefGoogle Scholar
  12. 12.
    Kazlas PT, McCreary MD (2002) Paperlike microencapsulated electrophoretic materials and displays. MRS Bulletin 27:894–897CrossRefGoogle Scholar
  13. 13.
    Park S, Jayaraman S (2003) Smart textiles: Wearable electronic systems. MRS Bulletin 28:585–591CrossRefGoogle Scholar
  14. 14.
    Jansen AN, Amine K, Newman AE, Vissers DR, Henriksen GL (2002) Low-cost, flexible battery packaging materials. JOM 54:29–54CrossRefGoogle Scholar
  15. 15.
    Robshaw MJB (2006) An overview of RFID tags and new cryptographic developments. Inf Secur Tech Rep 11:82–88CrossRefGoogle Scholar
  16. 16.
    Tung S, Witherspoon SR, Roe LA, Silano A, Maynard DP, Ferraro N (2001) A MEMS-based flexible sensor and actuator system for space inflatable structures. Smart Mater Struct 10:1230–1239CrossRefGoogle Scholar
  17. 17.
    Crone BK, Dodabalapur A, Sarpeshkar R, Gelperin A, Katz HE, Bao Z (2002) Organic oscillator and adaptive amplifier circuits for chemical vapor sensing. J Appl Phys 91: 140–146CrossRefGoogle Scholar
  18. 18.
    Fix W, Ullmann A, Ficker J, Clemens W (2002) Fast polymer integrated circuits. Appl Phys Lett 81:1735–1737CrossRefGoogle Scholar
  19. 19.
    Gelinck G, Huitema HEA, Veenendaal EV, Cantatore E, Schrijnemakers L, Van Der Putten JBPH, Geuns TCT, Beenhakkers M, Giesbers JB, Huisman B, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, Van Rens BJE, De Leeuw DM (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3:106–110CrossRefGoogle Scholar
  20. 20.
    Lewis JS, Weaver MS (2004) Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J Select Topics Quantum Electron 10:45–57CrossRefGoogle Scholar
  21. 21.
    Parthasarathy G, Liu J, Duggal AR (2003) Organic light emitting devices from displays to lighting. The Electrochem Soc Interface 12:42–47Google Scholar
  22. 22.
    Schaer M, Nüesch F, Berner D, Leo W, Zuppiroli L (2001) Water vapor and oxygen degradation mechanisms in organic light emitting diodes. Adv Funct Mater 11: 116–121CrossRefGoogle Scholar
  23. 23.
    McElvain J, Antoniadis H, Hueschen MR, Miller JN, Roitman DM, Sheats JR, Moon L (1996) Formation and growth of black spots in organic light-emitting diodes. J Appl Phys 80:6002–6007CrossRefGoogle Scholar
  24. 24.
    Burrows PE, Graff GL, Gross ME, Martin PM, Hall M, Mast E, Bonham C, Bennett W, Michalski L, Weaver M, Brown JJ, Fogarty D, Sapochak LS (2001) Gas permeation and lifetime tests on polymer-based barrier coatings. Proc SPIE 4105:75–83Google Scholar
  25. 25.
    Graff GL, Burrows PE, Williford RE, Praino RF (2005) Barrier layer technology for flexible displays. In: Crawford GP (ed) Flexible Flat Panel Displays. John Wiley & Sons Ltd, West Succex, pp 57–78CrossRefGoogle Scholar
  26. 26.
    Kim TW, Yan M, Erlat AG, McConnelee PA, Pellow M, Deluca J, Feist TP, Duggal AR, Schaepkens M (2005) Transparent hybrid inorganic/organic barrier coatings for plastic organic light-emitting diode substrates. J Vac Sci Technol 23:971–977CrossRefGoogle Scholar
  27. 27.
    Rutherford NM, Moro L, Chu X, Visser RJ (2004) Plastic barrier substrate and thin film encapsulation: Progress toward manufacturability. Third Annual Flexible Displays and Microelectronics ConferenceGoogle Scholar
  28. 28.
    Yan M, Kim TW, Erlat AG, Pellow M, Foust D, Liu J, Schaepkens M, Heller CM, McConnelee PA, Feist T, Duggal A (2005) A transparent, high barrier, and high heat substrate for organic electronics. Proc IEEE 93:1468–1477Google Scholar
  29. 29.
    Plichta A, Habeck A, Knoche S, Kruse A, Weber A, Hildebrand N (2005) Flexible glass substrate. In: Crawford GP (ed) Flexible Flat Panel Displays. John Wiley & Sons Ltd, West Sussex, pp 35–55CrossRefGoogle Scholar
  30. 30.
    Chen Y, Au J, Kazlas P, Ritenour A, Gates H, McCreary M (2003) Flexible active-matrix electronic ink display. Nature 423:136CrossRefGoogle Scholar
  31. 31.
    Ma RQ, Hewitt R, Rajan K, Silvernail J, Urbanik K, Hack M, Brown J (2007) Flexible low power consumption active-matrix OLED displays. International Display Manufacturing Conference and FPD Expo – Proceedings, Taipei, Taiwan 305–308Google Scholar
  32. 32.
    MacDonald WA (2004) Engineered films for display technologies. J Mater Chem 14:4–10CrossRefGoogle Scholar
  33. 33.
    MacDonald WA, Rollins K, MacKerron D, Rakos K, Eveson R, Hashimoto K, Rustin R (2005) Engineered films for display technologies. In: Crawford GP (ed) Flexible Flat Panel Displays. John Wiley & Sons Ltd, West Sussex, pp 11–33CrossRefGoogle Scholar
  34. 34.
    MacDonald WA (2004) Engineered films for display technologies. J Mater Chem 14:4–10CrossRefGoogle Scholar
  35. 35.
    Long K, Kattamis AZ, Cheng IC, Gleskova H, Wagner S, Sturm JC (2006) Stability of amorphous-silicon TFTs deposited on clear plastic substrates at 250°C to 280°C. IEEE Electron Device Lett 27:111–113CrossRefGoogle Scholar
  36. 36.
    Mahon JK, Brown JJ, Zhou TX, Burrows PE, Forrest SR (1999) Requirements of flexible substrates for organic light emitting devices in flat panel display applications. 42nd Annual Technical Conference Proceedings of the Society of Vacuum Coaters, Chicago, IL, pp 456–459Google Scholar
  37. 37.
    Kadoya T (ed) (1990) Food packaging. Academic Press, LondonGoogle Scholar
  38. 38.
    Gavitt IF (1994) Snack food packaging barrier: How much is enough? Proceedings of the Society Of Vacuum Coaters, 37th Annual Technical cConference, pp 127–132Google Scholar
  39. 39.
    Dean DA(1990) Plastics in pharmaceutical packaging: A literature review, Leatherhead, PiraGoogle Scholar
  40. 40.
    Coxe M (1998) Improved barrier properties of medical packaging. Annual Technical Conference – ANTEC, Conference Proceedings 13:3380–3383Google Scholar
  41. 41.
    Goosey MT (1985) Permeability of coatings and encapsulants for electronic and optoelectronic devices. In: Comyn J (ed) Polymer Permeability. Elsevier Applied Science, London, pp 309–339CrossRefGoogle Scholar
  42. 42.
    Burrows PE, Graff GL, Gross ME, Martin PM, Shi MK, Hall M, Mast E, Bonham C, Bennett W, Sullivan MB (2001) Ultra barrier flexible substrates for flat panel displays. Displays 22:65–69CrossRefGoogle Scholar
  43. 43.
    Childs ES (1974) The rapid growth of and big potential for plastics in packaging. In: Bruins PF (ed) Packaging with plastics. Gordon and Breach Science Publishers, New York, pp 1–24Google Scholar
  44. 44.
    McCrum NC, Buckley CP, Bucknall CB (1997) Principles of polymer engineering. Oxford University Press, OxfordGoogle Scholar
  45. 45.
    Jamieson EHH, Windle AH (1983) Structure and oxygen-barrier properties of metallized polymer film. J Mater Sci 18:64–80CrossRefGoogle Scholar
  46. 46.
    Krug TG (1990) Transparent barriers for food packaging. Proceedings of the Society of Vacuum Coaters, 33rd Annual Technical Conference, pp 163–169Google Scholar
  47. 47.
    Krug TG, Ludwig R, Steiniger G (1993) New developments in transparent barrier coatings. Proceedings of the Society of Vacuum Coaters, 36th Annual Technical Conference, pp 302–306Google Scholar
  48. 48.
    Chatham H (1996) Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf Coat Technol 78:1–9CrossRefGoogle Scholar
  49. 49.
    Maixner RD (2002) Future trends in permeation measurement. Proceedings of the Society of Vacuum Coaters, 45th Annual Technical Conference, pp 461–464Google Scholar
  50. 50.
    Stevens M, Tuomela S, Mayer D (2005) Water vapor permeation testing of ultra-barriers: Limitations of current methods and advancements resulting in increased sensitivity. Proceedings of the Society of Vacuum Coaters, 48th Annual Technical Conference, pp 189–191Google Scholar
  51. 51.
    Norenberg H, Miyamoto T, Tsukahara Y, Smith GDW, Briggs, GAD (1999) Mass spectrometric estimation of gas permeation coefficients for thin polymer membranes. Rev Sci Instrum 70:2414–2420CrossRefGoogle Scholar
  52. 52.
    Norenberg H, Burlakov V (2004) Recent developments in measuring permeation through barrier films and understanding of permeation processes. Proceedings of the Society of Vacuum Coaters, 47th Annual Technical Conference, 164–167Google Scholar
  53. 53.
    Vogt BD, Lee HJ, Prabhu VM, Delongchamp DM, Lin EK, Wu WL, Satija SK (2005) X-ray and neutron reflectivity measurements of moisture transport through model multilayered barrier films for flexible displays. J Appl Phys 11:114509-1–114509-7Google Scholar
  54. 54.
    Dunkel R, Bujas R, Klein A, Horndt V (2005) Method of measuring ultralow water vapor permeation for OLED displays. Proc IEEE 93:1478–1482Google Scholar
  55. 55.
    Nisato G, Bouten PCP, Slinkkerveer PJ, Bennet WD, Graff GL, Rutherford N, Wiese L (2001) Evaluating high performance diffusion barriers: The calcium test. Asia Display/IDW’01 Proceedings, pp 1435–1438Google Scholar
  56. 56.
    Nisato G, Kuilder M, Bouten P, Moro L, Philips O, Rutherford N (2003) Thin-film encapsulation for OLEDs: Evaluation of multilayer barriers using the Ca test. SID 03 Digest XXXIV:550–553Google Scholar
  57. 57.
    Burrows PE, Graff GL, Gross ME, Martin PM, Hall M, Mast E, Bonham C, Bennett W, Michalski L, Weaver M, Brown JJ, Fogarty D, Sapochak LS (2001) Gas permeation and lifetime tests on polymer-based barrier coatings. Proc SPIE 4105:75–83Google Scholar
  58. 58.
    Erlat AG, Schaepkens M, Kim TW, Heller CM, Yan M, McConnelee P (2004) Ultra-high barrier coatings on polymer substrates for flexible optoelectronics: Water vapor transport and measurement systems. Proceedings of the Society of Vacuum Coaters, 47th Annual Technical Conference, pp 654–657Google Scholar
  59. 59.
    Erlat AG, Yan M, Kim TW, Schaepkens M, Liu J, Heller CM, McConnelee P, Feist T, Duggal AR (2005) Ultra-high barrier coatings for flexible organic electronics. Proceedings of the Society of Vacuum Coaters, 48th Annual Technical Conference, pp 116–120Google Scholar
  60. 60.
    Paetzold R, Winnacker A, Henseler D, Cesari V, Heuser K (2003) Permeation rate measurements by electrical analysis of calcium corrosion. Rev Sci Instrum 74:5147CrossRefGoogle Scholar
  61. 61.
    Cros S, Firon M, Lenfant S, Trouslard P, Beck L (2006) Study of thin calcium electrode degradation by ion beam analysis. Nucl Instrum Methods Phys Res B 251:257–260CrossRefGoogle Scholar
  62. 62.
    Lewis J, Grego S, Vick E, Temple D (2004) Performance of thin films for flexible OLED displays. 4th Annual Flexible Displays and Microelectronics ConferenceGoogle Scholar
  63. 63.
    Erlat AG, Yan M, Heller CMH, unpublished results, GE Global Research CenterGoogle Scholar
  64. 64.
    Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770–3778CrossRefGoogle Scholar
  65. 65.
    Barrer RM (1941) Diffusion in and through solids. Cambridge University Press, New YorkGoogle Scholar
  66. 66.
    Felts JT (1991) Thickness effects on thin film gas barriers: Silicon-based coatings. Proceedings of the Society of Vacuum Coaters, 34th Aannual Technical Conference, pp 99–104Google Scholar
  67. 67.
    Felts JT (1993) Transparent barrier coatings update: Flexible substrates. Proceedings of the Society of Vacuum Coaters 36th Annual Technical Conference, pp 324–331Google Scholar
  68. 68.
    Benmalek M, Dunlop HM (1995) Inorganic coatings on polymers. Surf Coat Technol 76–77:821–826Google Scholar
  69. 69.
    Roberts AP, Henry BM, Sutton AP, Grovenor CRM, Briggs GAD, Miyamoto T, Kano M, Tsukahara Y, Yanaka M (2002) Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films: Role of the oxide lattice, nano-defects and macro-defects. J Membrane Sci 208:75–88CrossRefGoogle Scholar
  70. 70.
    Tropsha YG, Harvey NG (1997) Activated rate theory treatment of oxygen and water transport through silicon oxide/poly(ethylene terephthalate) composite barrier structures. J Phys Chem B 101:2239–2266CrossRefGoogle Scholar
  71. 71.
    da Silva Sobrinho AS, Latreche M, Czeremuszkin G, Klemberg-Sapieha JE, Wertheimer MR (1998) Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition. J Vac Sci Technol A 16:3190–3198CrossRefGoogle Scholar
  72. 72.
    Henry BM, Dinelli F, Zhao KY, Erlat AG, Grovenor CRM, Briggs GAD (1999) Characterization of oxide gas barrier films. Proceedings of the Society of Vacuum Coaters, 42nd Annual Technical Conference, pp 403–407Google Scholar
  73. 73.
    Barker CP, Kochem KH, Revell KM, Kelly RSA, Badyal JPS (1995) Interfacial chemistry of metallized, oxide coated, and nanocomposite coated polymer films. Thin Solid Films 257:77–82CrossRefGoogle Scholar
  74. 74.
    Klemberg-Sapieha JE, Martinu L, Küttel OM, Wertheimer MR (1993) Transparent gas barrier coatings produced by dual-frequency PECVD. Proceedings of the Society of Vacuum Coaters, 36th Annual Technical Conference pp 445–449Google Scholar
  75. 75.
    Schaepkens M, Kim TW, Erlat AG, Yan M, Flanagan KW, Heller CM, McConnelee PA (2004) Ultrahigh barrier coating deposition on polycarbonate substrates. J Vac Sci Technol A 22:1716–1722CrossRefGoogle Scholar
  76. 76.
    Groner MD, George SM, McLean RS, Carcia PF (2006) Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl Phys Lett 88:0517109CrossRefGoogle Scholar
  77. 77.
    Carcia PF, McLean RS, Reilly MH, Groner MD, George SM (2006) Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers. Appl Phys Lett 89:031915CrossRefGoogle Scholar
  78. 78.
    Decker W, Henry BM (2002) Basic principles of thin film barrier coatings. Proceedings of the Society of Vacuum Coaters, 45th annual technical conference, pp 493–502Google Scholar
  79. 79.
    da Silva Sobrinho AS, Czeremuszkin G, Latreche M, Wertheimer MR (2000) Defect-permeation correlation for ultrathin transparent barrier coatings on polymers. J Vac Sci Technol A 18:149–157CrossRefGoogle Scholar
  80. 80.
    Erlat AG, Spontak RJ, Clarke RP, Robinson TC, Haaland PD, Tropsha Y, Harvey NG, Vogler EA (1999) SiOx gas barrier coatings on polymer substrates: morphology and gas transport considerations. J Phys Chem B 103:6047–6055CrossRefGoogle Scholar
  81. 81.
    Ling JSG, Leggett GJ (1997) Scanning force microscopy of poly(ethylene terephthalate) surfaces: Comparison of SEM with SFM topographical, lateral force and force modulation data. Polymer 38:2617–2625CrossRefGoogle Scholar
  82. 82.
    Erlat AG, Henry BM, Ingram JJ, Mountain DB, McGuigan, A, Howson RP, Grovenor, CRM, Briggs GAD, Tsukahara Y (2001) Characterisation of aluminium oxynitride gas barrier films. Thin Solid Films 388:78–86CrossRefGoogle Scholar
  83. 83.
    Cros B, Vallat MF, Despaux G (1997) Characterization by acoustic microscopy of adhesion in poly(ethylene terephthalate) films coated by aluminum. Appl Surf Sci 126:159–168CrossRefGoogle Scholar
  84. 84.
    Shaw DG, Langlois MG (1994) Use of vapor deposited acrylate coatings to improve the barrier properties of metallized film. Proceedings of the Society of Vacuum Coaters, 45th Annual Technical Conference, pp 240–247Google Scholar
  85. 85.
    Roehrig M, Shaw D, Langlois M, Sheehan C (1997) Use of evaporated acrylate coatings to smooth the surface of polyester and polypropylene film substrates. J Plastic Film & Sheeting 13:235–251Google Scholar
  86. 86.
    Affinito JD, Gross ME, Coronado CA, Graff GL, Greenwell EN, Martin PM (1996) New method for fabricating transparent barrier layers. Thin Solid Films 290–291:63–67CrossRefGoogle Scholar
  87. 87.
    Affinito JD, Eufinger S, Gross ME, Graff GL, Martin PM (1997) PML/oxide/PML barrier layer performance differences arising from use of UV or electron beam polymerization of the PML layers. Thin Solid Films 308–309:19–25CrossRefGoogle Scholar
  88. 88.
    Yan M, Erlat AG, Duggal AR, GE Global Research, unpublished resultsGoogle Scholar
  89. 89.
    da Silva Sobrinho AS, Czeremuszkin G, Latreche M, Dennle G, Wertheimer MR (1999) Study of defects in ultra-thin transparent coatings on polymers. Surf Coat Technol 116–119:1204–1210CrossRefGoogle Scholar
  90. 90.
    Henry BM, Dinelli F, Zhao KY, Grovenor CRM, Kolosov OV, Briggs GAD, Roberts AP, Kumar RS, Howson RP (1999) Microstructural study of transparent metal oxide gas barrier films. Thin Solid Films 355–356:500–505CrossRefGoogle Scholar
  91. 91.
    Henry BM, Erlat AG, Grovenor CRM, Briggs GAD, Tsukahara T, Miyamoto T, Noguchi N, Niijima T (2000) Proceedings of the Society of Vacuum Coaters, 43rd Annual Technical Conference pp 373–378Google Scholar
  92. 92.
    Prins W, Hermans JJ (1959) Theory of permeation through metal coated polymer films. J Phys Chem 63:716–719CrossRefGoogle Scholar
  93. 93.
    Beu TA, Mercea PV (1990) Gas transport through metallized polymer membranes. Mater Chem Phys 26:309–322CrossRefGoogle Scholar
  94. 94.
    Rossi G, Nulman M (1993) Effect of local flaws in polymeric permeation reducing barriers. J Appl Phys 74:5471–5475CrossRefGoogle Scholar
  95. 95.
    Czeremuszkin G, Latreche M, da Silva Sobrinho AS, Wertheimer MR (1999) Simple model of oxygen permeation through defects in transparent coatings. Proceedings of the Society of Vacuum Coaters, 42nd Annual Technical Conference, pp 176–180Google Scholar
  96. 96.
    Hanika M, Langowski HC, Moosheimer U, Peukert W (2003) Inorganic layers on polymeric films – Influence of defects and morphology on barrier properties. Chem Eng Technol 26:605–614CrossRefGoogle Scholar
  97. 97.
    Koo WH, Jeong SM, Choi SH, Kim W, Baik HK, Lee SM, Lee SJ (2005) Effects of the polarizability and packing density of transparent oxide films on water vapor permeation. J Phys Chem B 109:11354–11360CrossRefGoogle Scholar
  98. 98.
    Henry BM, Erlat AG, Deng CS, Briggs GAD, Miyamoto T, Noguchi N, Niijima T, Tsukahara Y (2001) The permeation of water vapor through gas barrier films. Proceedings of the Society of Vacuum Coaters, 44th Annual Technical Conference, pp 469–475Google Scholar
  99. 99.
    Erlat AG, Henry BM, Howson RP, Grovenor CRM, Briggs GAD, Tsukahara Y (2001) Growth and characterization of transparent metal oxide and oxynitride gas barrier films on polymer substrates. Proceedings of the Society of Vacuum Coaters, 44th Annual Technical Conference, pp 448–454Google Scholar
  100. 100.
    Erlat AG, Henry BM, Grovenor CRM, Briggs GAD, Chater RJ, Tsukahara Y (2004) Mechanism of water vapor transport through PET/AlOxNy gas barrier films. J Phys Chem B 108:883–890CrossRefGoogle Scholar
  101. 101.
    Schiller S, Neumann M, Morgner H, Schiller N (1995) Reactive aluminum oxide coating of plastic films – possibilities and limitations for high deposition rates. Proceedings of the Society of Vacuum Coaters, 38th Annual Technical Conference, pp 18–27Google Scholar
  102. 102.
    Schiller N, Reschke J, Goedicke K, Neumann M (1996) Application of the magnetron activated deposition process (MAD-process) to coat polymer films with alumina in web coaters. Surf Coat Technol 86–87:776–782CrossRefGoogle Scholar
  103. 103.
    Schiller N, Morgner H, Fahland M, Straach S, Räbisch M, Charton C (1999) Transparent oxide coatings on plastic webs for emerging applications. Proceedings of the Society of Vacuum Coaters, 42nd Annual Technical Conference, pp 392–396Google Scholar
  104. 104.
    Langereis E, Creatore M, Heil SBS, van de Sanden MCM, Kessels WMM (2006) Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers. Appl Phys Lett 89:081915CrossRefGoogle Scholar
  105. 105.
    Weidner WK, Zambov LM, Shamamian VA, Perz SV, Camilletti RC, Snow SA, Loboda MJ, Cerny GA (2005) PECVD processed silicon carbide coatings for organic luminescent devices. Proceedings of the Society of Vacuum Coaters, 48th Annual Technical Conference, 158–162Google Scholar
  106. 106.
    Weaver MS, Michalski LA, Rajan K, Rothman MA, Silvernail JA, Brown JJ, Burrows PE, Graff GL, Gross ME, Martin PM, Hall M, Mast M, Bonham C, Bennett W, Zumhoff M (2002) Organic light-emitting devices with extended operating lifetimes on plastic substrates. Appl Phys Lett 81:2929–2931CrossRefGoogle Scholar
  107. 107.
    Langowski HC, Melzer A, Schubert D (2002) Ultra high barrier layers for technical applications. Proceedings of the Society of Vacuum Coaters, 45th Annual Technical Conference, pp 471–475Google Scholar
  108. 108.
    Zambov L, Weidner K, Shamamian V, Camilletti R, Pernisz U, Loboda M, Cerny G (2006) Advanced chemical vapor deposition silicon carbide barrier technology for ultra-low permeability applications. J Vac Sci Technol 24:1706–1713CrossRefGoogle Scholar
  109. 109.
    Henry BM, Howells D, Topping JA, Assender HE, Grovenor CRM, Marras L (2006) Microstructural and barrier properties of multilayered films. Proceedings of the Society of Vacuum Coaters, 49th Annual Technical Conference, pp 654–657Google Scholar
  110. 110.
    Charton C, Schiller N, Fahland M, Hollander A, Wedel A, Noller K (2006) Development of high barrier films on flexible polymer substrates. Thin Solid Films 502:99–103CrossRefGoogle Scholar
  111. 111.
    Yializis A, Powers GL, Shaw DG (1990) A new high temperature multilayer capacitor with acrylate dielectrics. IEEE Trans Components, Hybrids Manufact Technol 13:611–616CrossRefGoogle Scholar
  112. 112.
    Leterrier Y (2003) Durability of nanosized oxygen-barrier coatings on polymers. Prog Mater Sci 48:1–55CrossRefGoogle Scholar
  113. 113.
    Miyamoto T, Mizuno K, Noguchi N, Niijima N (2001) Gas barrier performances of organic–inorganic multilayered films. Proceedings of the Society of Vacuum Coaters, 44th annual Technical Conference, pp 166–171Google Scholar
  114. 114.
    Haas KH, Amberg-Schwab A, Rose K, Schottner G (1999) Functionalized coatings based on inorganic–organic polymers (ORMOCER) and their combination with vapor deposited inorganic thin films. Surf Coat Technol 111:72–79CrossRefGoogle Scholar
  115. 115.
    Kapoor S, Seta ME, Visser RJ, Gross ME, Bennett WD, Newton R, Goodwin K, Deng Y (2006) Pilot production of ultra-barrier substrate for flexible displays. Proceedings of the Society of Vacuum Coaters, 49th Annual Technical Conference, pp 625–631Google Scholar
  116. 116.
    Yan M, Duggal A, McConnelee PA, Schaepkens M (2005) Methods and fixtures for facilitating handling of thin films. US 20050016464 A1Google Scholar
  117. 117.
    Yan M, Erlat AG, Zhao R, Smith DJ, Scherer B, Jones C, Foust D, McConnelee PA, Feist TP, Duggal AR (2007) Roll-to-roll ultra-high barrier substrate for organic electronics. 6th Annual Flexible Displays and Microelectronics ConferenceGoogle Scholar
  118. 118.
    Madocks J, Rewhinkle J, Barton L (2005) Packaging barrier films deposited on PET by PECVD using a new high density plasma source. Mater Sci Eng B 119:268–273CrossRefGoogle Scholar
  119. 119.
    Shamamian V, Zambov L, Pernisz U, Kim SJ, Perz S, Cerny GA (2006) Progress in the development of SiC:H alloy films on flexible substrates for extremely low moisture permeability applications. 5th Flexible Displays and Microelectronics ConferenceGoogle Scholar
  120. 120.
    Czeremuszkin G, Latreche M, Wertheimer MR (2001) Permeation through defects in transparent barrier-coated plastic films. Proceedings of the Society of Vacuum Coaters, 49th Annual Technical Conference, pp 178–183Google Scholar
  121. 121.
    Graff GL, Williford RE, Burrows PE (2004) Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation. J Appl Phys 96: 1840–1849CrossRefGoogle Scholar
  122. 122.
    Sugimoto A, Ochi H, Fujimura S, Yoshida A, Miyadera T, Tsuchida M (2004) Flexible OLED displays using plastic substrates. IEEE J Select Top Quantum Electron 10: 107–114CrossRefGoogle Scholar
  123. 123.
    Chwang A, Rothman MA, Mao SY, Hewitt RH, Weaver MS, Silvernail JA, Rajan K, Hack M, Brown JJ, Chu X, Moro L, Krajewski T, Rutherford N (2003) Thin film encapsulated flexible organic electroluminescent displays. Appl Phys Lett 83:413–415CrossRefGoogle Scholar
  124. 124.
    Foust D, Balch E, Duggal A, Heller C, Guida R, Nealon W, Faircloth T (2006) Series connected OLED structure and fabrication method. US7049757 B2Google Scholar
  125. 125.
    Duggal AR, Foust DF, Nealon WF, Heller CM (2003) Fault-tolerant, scalable organic light-emitting device architecture. Appl Phys Lett 82:2580–2582CrossRefGoogle Scholar
  126. 126.
    LUMATION Green 1300 Series LEP Data Sheets, The Dow Chemical CompanyGoogle Scholar
  127. 127.
    Burrows PE, Bulovic V, Forrest SR, Sapochak LS, Mccarty DM, Thompson ME (1994) Reliability and degradation of organic light emitting devices. Appl Phys Lett 65:2922–2924CrossRefGoogle Scholar
  128. 128.
    Williams DJ, Rajeswaran G (2003) Proc SPIE 5080:166–169CrossRefGoogle Scholar
  129. 129.
    Tsuruoka Y, Hieda S, Tanaka S, Takahashi H (2003) Transparent thin film desiccant for OLEDs. Proc Soc Inform Display Symp Dig Tech Papers, pp 860–863Google Scholar
  130. 130.
    Moro L, Krajewski TA, Rutherford NM, Philips O, Visser RJ, Gross M, Bennett WD, Graff G (2004) Process and design of a multilayer thin film encapsulation of passive matrix OLED displays. Proc SPIE 5214:83–93CrossRefGoogle Scholar
  131. 131.
    Erlat AG, Yan M, Zhao R, Tandon S, Smith DJ, Scherer B, Jones C, Foust D, McConnelee PA, Feist TP, Duggal AR (2007) Recent developments in ultra-high barrier (UHB) coatings for organic electronics. Presentation at the 50th Annual Technical Conference, Society of Vacuum CoatersGoogle Scholar
  132. 132.
    Van Assche FJH, Vangheluwe RT, Maes JWC, Mishcke MS, Bijker MD, Dings FC, Evers MF, Kessels WMM, van de Sanden MCM (2004) A thin film encapsulation stack for PLED and OLED displays. SID 04 Digest 35:695–697Google Scholar
  133. 133.
    Lifka H, van Esch HA, Rosink JJWM (2004) Thin film encapsulation of OLEDs with a NONON stack. SID 04 Digest 35:1384–1387Google Scholar
  134. 134.
    Rosink JJWM, Lifka H, Rietjens GH, Pierik A (2005) Ultra-thin encapsulation for large area OLED displays. SID 05 Digest 36:1272–1275Google Scholar
  135. 135.
    van Rens B (2006) Breaking the LCD cost barrier for OLED production using inline concepts. 2nd Plastic Electronics Conference and ShowcaseGoogle Scholar
  136. 136.
    Ghosh AP, Gerenser LJ, Jarman CM, Fornalik JE (2005) Thin-film encapsulation of organic light-emitting devices. Appl Phys Lett 86:223503-1–223503-3Google Scholar
  137. 137.
    Park SK, Oh J, Hwang C, Lee J, Yang YS, Chu HY (2005) Ultrathin film encapsulation of an OLED by ALD. Electrochem Solid State Lett 8:H21–H23CrossRefGoogle Scholar
  138. 138.
    Tzen CK, Shen WJ, Wang HC, Su CF, Wu CC, Lu CC, Tzen JC, Su CY, Tang SJ (2006) High transparency and low operation voltage top emission organic light emitting devices with thin film encapsulation. SID 06 Digest 37:972–974Google Scholar
  139. 139.
    Hemerik M, van Erven R, Vangheluwe R, Yang J, van Rijswijk T, Winters R, van Rens B (2006) Lifetime of thin-film encapsulation and its impact on OLED device performance. SID 06 Digest 1571–1573Google Scholar
  140. 140.
    Yi CH, LeeYK, Lee SM, Ju SH, Lee EJ, Choo YM, Park KC, Jang J (2004) A hybrid encapsulation method for OLED. SID 04 Digest 715–716Google Scholar
  141. 141.
    Akedo K, Miura A, Fujikawa H, Taga Y (2003) Plasma-CVD SiNx/plasma-polymerized CNx:H multi-layer passivation films for organic light emitting diodes. Proc Soc Inform Display Symp 34:559–561CrossRefGoogle Scholar
  142. 142.
    Yoshida A, Fujimura S, Miyake T, Yoshizawa T, Ochi H, Sugimoto A, Kubota H, Miyadera T, Ishizuka S, Tsuchida M, Nakada H (2003) 3-inch Full-color OLED display using a plastic substrate. Proc Soc Inform Display Symp 34:856–859CrossRefGoogle Scholar
  143. 143.
    Kubota H, Miyaguchi S, Ishizuka S, Wakimoto T, Funaki J, Fukuda Y, Watanabe T, Ochi H, Sakamoto T, Miyake T, Tsuchida M, Ohshita I, Tohma T (2000) Organic LED full color passive-matrix display. J Luminescence 87–89:56–60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.General Electric Global Research CenterNiskayuna

Personalised recommendations