Solution Cast Films of Carbon Nanotubes for Transparent Conductors and Thin Film Transistors

  • David Hecht
  • George Grüner
Part of the Electronic Materials: Science & Technology book series (EMST, volume 11)

Introduction: Nanoscale Carbon for Electronics, the Value Proposition

In recent years, we have seen the emergence of novel electronic materials ranging from conducting plastics to advanced composites. These materials have been developed with the aim of replacing inorganic materials that have been improved to near perfection decades ago. The attractiveness of using these materials in electronic applications lies not necessarily in increased performance, but in inexpensive, room-temperature fabrication, and attributes such as mechanical flexibility.

Various new forms of nanoscale carbon have emerged with novel attributes. The discovery of C60 [1], a “new form of carbon” was quickly followed by the discovery of carbon nanotubes [2], and recently graphene flakes [3]. In all cases, the interesting and useful properties derive from the fact that carbon materials based on sp2bonds, such as are found in graphite, lie between metals, and semiconductors (graphite is a semimetal). This,...


Percolation Threshold Gate Voltage Conducting Channel Device Characteristic Gate Capacitance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Derek Hecht and Liangbing Hu for useful discussions and textual improvements.


  1. 1.
    Curl RF, Smalley RE (1988) Probing C60. Science 242:1017–1022CrossRefGoogle Scholar
  2. 2.
    Iijima A (1991) Helical microtubles of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  3. 3.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effects in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  4. 4.
    Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: Synthesis, structure, properties, and applications, Vol 80. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Durkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:35–39CrossRefGoogle Scholar
  6. 6.
    Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRefGoogle Scholar
  7. 7.
    Gao R, Pan Z, Wang ZL (2001) Work function at the tips of multiwalled carbon nanotubes. Appl Phys Lett 78:1757–1759CrossRefGoogle Scholar
  8. 8.
    Sun JP, Zhang ZX, Hou SM, Gu ZN, Zhao XY, Liu WM, Xue ZQ (2004) Work function of single-walled carbon nanotubes determined by field emission microscopy. Appl Phys A: Mater Sci Process 75:479–483Google Scholar
  9. 9.
    Wu Z, Chen Z, Du X, Logan J, Sippel J, Nikolou M, Kamaras K, Reynolds J, Tanner D, Hebard A, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276CrossRefGoogle Scholar
  10. 10.
    Hu L, Hecht DS, Gruner G (2004) Percolation in transparent and conducting carbon nanotube networks. Nano Lett 4:2513–2517CrossRefGoogle Scholar
  11. 11.
    Fuhrer MS, Nygard J, Shih L, Forero M, Yoon Y, Mazzoni MSC, Choi HJ, Ihm J, Louie S, Zettl A, McEuen PL (2000) Crossed nanotube junctions. Science 288:494–497CrossRefGoogle Scholar
  12. 12.
    Pike GE, Seager CH (1973) Percolation and conductivity: A computer study. Phys Rev B 10:1421CrossRefGoogle Scholar
  13. 13.
    Stauffer G (1985) Introduction to percolation theory. Taylor and Francis, LondonCrossRefGoogle Scholar
  14. 14.
    Kaiser AB, Dusberg G, Roth S (1998) Heterogeneous model for conduction in carbon nanotubes. Phys Rev B 57Google Scholar
  15. 15.
    Hone J, Llaguno C, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE (2000) Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77:666–668CrossRefGoogle Scholar
  16. 16.
    Bekyarova E, Itkis ME, Cabrera N, Zhao B, Yu A, Gao J, Haddon RC (2004) Electronic properties of single-walled carbon nanotube networks. J Am Chem Soc 127: 5990–5995CrossRefGoogle Scholar
  17. 17.
    Xu H, Anlag SM, Hu L, Gruner G (2007) Microwave shielding of transparent and conducting single-walled carbon nanotube films. Appl Phys Lett 90:183119CrossRefGoogle Scholar
  18. 18.
    Ruzicka B, Degiorgi L, Gaal R, Thien L, Bacsa R, Salvetat JP, Forro L (2000) Optical and dc conductivity study of potassium-doped single-walled carbon nanotube films. Phys Rev B 61:R2469CrossRefGoogle Scholar
  19. 19.
    Durkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:55–59Google Scholar
  20. 20.
    Li S, Yu Z, Rutherglen C, Burke PJ (2004a) Electrical properties of 0.4 cm long single-walled carbon nanotubes. Nano Lett 4:2003–2007Google Scholar
  21. 21.
    Li S, Yu Z, Yen SF, Tang WC, Burke PJ (2004b) Carbon nanotube transistor operation at 2.6 GHz. Nano Lett 4:753–756Google Scholar
  22. 22.
    Javey A, Guo J, Wang Q, Lundstrom M, Dai HJ (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657CrossRefGoogle Scholar
  23. 23.
    Wharam DA, Thornton TJ, Newbury R, Pepper M, Ahmed H, Frost JEF, Hasko DG, Peacock DC, Ritchie DA, Jones GAC (1988) One-dimensional transport and the quantization of the ballistic resistance. J Phys C: Solid State Phys 21:L209–L214CrossRefGoogle Scholar
  24. 24.
    Balberg I, Binenbaum M, Anderson CH (1983) Computer study of the percolation threshold in a two-dimension anisotropic system of conducting sticks. Phys Rev B 51:1605CrossRefGoogle Scholar
  25. 25.
    Hecht DS, Hu L, Gruner G (2006a) Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl Phys Lett 89:13312Google Scholar
  26. 26.
    Kaempgen M, Duesberg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surf Sci 252:425–429CrossRefGoogle Scholar
  27. 27.
    Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804CrossRefGoogle Scholar
  28. 28.
    Star A, Bradley K, Gabriel JP, Gruner G (2003a) Nano-electronic sensors: Chemical detection using carbon nanotubes. Polymeric Mater: Sci Eng 89:204Google Scholar
  29. 29.
    Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE (1997) Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388:255CrossRefGoogle Scholar
  30. 30.
    O’connell MJ, Eibergen EE, Doorn SK (2005) Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nat Mater 4:412CrossRefGoogle Scholar
  31. 31.
    Takenobu T, Kanbara T, Akima N, Takahashi T, Shiraishi M, Tsukagoshi K, Kataura H, Aoyagi Y, Iwasa Y (2005) Control of carrier density by a solution method in carbon-nanotube devices. Adv Mater 17:2430–2434CrossRefGoogle Scholar
  32. 32.
    Islam MF, Rojas E, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273CrossRefGoogle Scholar
  33. 33.
    Matarredona O, Rhoads H, Li Z, Harwell JH, Balzano L, Resasco DE (2003) Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J Phys Chem B 107:13357–13367CrossRefGoogle Scholar
  34. 34.
    Star A, Joshi V, Han T, Virginia M, Altoe P, Gruner G, Stoddart JF (2004) Electronic detection of the enzymatic degradation of starch. Organic Lett 6:2089–2092CrossRefGoogle Scholar
  35. 35.
    Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342CrossRefGoogle Scholar
  36. 36.
    Hecht DS, Hu L, Gruner G (2007) Electronic properties of carbon nanotube/fabric composites. Curr Appl Phys 7:60–63CrossRefGoogle Scholar
  37. 37.
    Meitl M, Zhou Y, Gaur A, Jeon S, Usrey ML, Strano MS, Rogers JA (2004) Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett 4:1643–1647CrossRefGoogle Scholar
  38. 38.
    Zhou Y, Hu L, Gruner G. (2006) A method of printing carbon nanotube thin films. Appl Phys Lett 88:123109CrossRefGoogle Scholar
  39. 39.
    Dressel M, Gruner G (2002) Electrodynamics of solids: Optical properties of electrons in mattter. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. 40.
    Hu L, Gruner G, Li D, Kaner RB, Cech J (2007) Patternable transparent carbon nanotube films for electrochromic devices. J Appl Phys 101:016102CrossRefGoogle Scholar
  41. 41.
    Pasquire AD, Unalan HE, Kanwal A, Miller S, Chhowalla M (2005) Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl Phys Lett 87:203511CrossRefGoogle Scholar
  42. 42.
    Lagemaat J, Barnes TM, Rumbles G, Shaheen SE, Coutts TJ, Weeks C, Levitsky I, Peltola J, Glatkowski P (2006) Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Appl Phys Lett 88:233503CrossRefGoogle Scholar
  43. 43.
    Rowell MW, Topinka MA, McGehee MD, Prall J, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88:233506CrossRefGoogle Scholar
  44. 44.
    Li J, Hu L, Wang L, Zhou Y, Gruner G, Marks TJ (2006) Organic light-emitting diodes having carbon nanotube anodes. Nano Lett 6:2472–2477CrossRefGoogle Scholar
  45. 45.
    Aguirre CM, Auvray S, Pigeon S, Izquierdo R, Desjardins P, Martel R (2006) Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl Phys Lett 88:183104CrossRefGoogle Scholar
  46. 46.
    Zhang G, Qi P, Wang X, Lu Y, Li X, Tu R, Bangsaruntip S, Mann D, Zhang L, Dai H (2006a) Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314: 974–977Google Scholar
  47. 47.
    Gruner G (2006) Carbon nanotube films for transparent and plastic electronics. J Mater Chem 16:3533CrossRefGoogle Scholar
  48. 48.
    Saran N, Parikh K, Suh D, Munoz E, Kolla H, Manohar SK (2004) Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. J Am Chem Soc 126:4462–4463CrossRefGoogle Scholar
  49. 49.
    Gabriel JC (2003) Large scale production of carbon nanotube transistors. Mater Res Soc Symp Proc 776:271–277Google Scholar
  50. 50.
    Snow ES, Novak JP, Campbell PM, Park D (2003) Random networks of carbon nanotubes as an electronic material. Appl Phys Lett 82:2145–2147CrossRefGoogle Scholar
  51. 51.
    Bradley K, Cumings J, Star A, Gabriel JP, Gruner G (2003a) Influence of mobile ions on nanotube based FET devices. Nano Lett 3:639–641Google Scholar
  52. 52.
    Artukovic E, Kaempgen M, Hecht DS, Roth S, Gruner G (2005) Transparent and flexible carbon nanotube transistors. Nano Lett 5:757–760CrossRefGoogle Scholar
  53. 53.
    Cao Q, Hur S, Zhu Z, Sun Y, Wang C, Meitl M, Shim M, Rogers J (2006a) Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater 18:304–309Google Scholar
  54. 54.
    Cao Q, Xiz M, Shim M, Rogers J (2006b) Bilayer organic-inorganic gate dielectrics for high-performance low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p-n diodes on plastic substrates. Adv Funct Mater 16:2355–2362Google Scholar
  55. 55.
    Appenzeller J, Knoch J, Radosavljevic M, Avouris P (2004) Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. Phys Rev Lett 92:226802CrossRefGoogle Scholar
  56. 56.
    Koswatta SO, Lundstrom MS, Nikonov DE (2007) Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon-assisted tunneling. Nano Lett 7:1160–1164CrossRefGoogle Scholar
  57. 57.
    Neaman DA (1992) Semiconductor physics and devices. Irwin, ChicagoGoogle Scholar
  58. 58.
    Schindler A, Brill J, Fruehauf N, Novak JP, Yaniv Z (2007) Solution-deposited carbon nanotube layers for flexible display applications. Physica E 37:119–123Google Scholar
  59. 59.
    Yoo B, Jung T, Basu D, Dodabalapur A, Jones BA, Facchetti A, Wasielewski MR, Marks TJ (2006) High-mobility bottom-contact n-channel organic transistors and their use in complementary ring oscillators. Appl Phys Lett 88:082104Google Scholar
  60. 60.
    Dimitrakopolous CD, Mascaro DJ (2001) Organic thin-film transistors: A review of recent advances. IBM J Res Dev 45:11–27CrossRefGoogle Scholar
  61. 61.
    Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236CrossRefGoogle Scholar
  62. 62.
    Cao Q, Xia M, Kocabas C, Shim M, Rogers JA, Rotkin S (2007) Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl Phys Lett 90:023516CrossRefGoogle Scholar
  63. 63.
    Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320CrossRefGoogle Scholar
  64. 64.
    McGill SA, Rao SG, Manandhar P, Xiong P, Hong S (2006) High-performance, hysteresis-free carbon nanotube field-effect transistors via directed assembly. Appl Phys Lett 89:163123CrossRefGoogle Scholar
  65. 65.
    Unalan HE, Fanchini G, Kanwal A, Pasquier AD, Chhowalla M (2006) Design criteria for transparent single-wall carbon nanotube thin-film transistors. Nano Lett 6:677–682Google Scholar
  66. 66.
    Bradley K, Gabriel JP, Gruner G (2003b) Flexible nanotube electronics. Nano Lett 3: 1353–1355Google Scholar
  67. 67.
    Bradley K, Briman M, Star A, Gruner G (2004) Charge transfer from adsorbed proteins. Nano Lett 4:253–256CrossRefGoogle Scholar
  68. 68.
    Hecht DS, Ramirez RJ, Briman M, Artukovic E, Chichak KS, Stoddart JF, Gruner G (2006) Bio-inspired detection of light using porphyrin-sensitized single-wall carbon nanotube FETs. Nano Lett 6:2031–2036Google Scholar
  69. 69.
    Novak JP, Snow ES, Houser EJ, Park D, Stepnowski JL, McGill RA (2003) Nerve agent detection using networks of single-walled carbon nanotubes. Appl Phys Lett 83:4026–4028CrossRefGoogle Scholar
  70. 70.
    Javey A et al (2002) High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat Mater 1:241CrossRefGoogle Scholar
  71. 71.
    Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen PL (2002) High performance electrolyte-gated carbon nanotube transistors. Nano Lett 2:869CrossRefGoogle Scholar
  72. 72.
    McGill SA, Rao SG, Manandhar P, Xiong P (2006) High-performance, hysteresis-free carbon nanotube field-effect transistors via directed assembly. Appl Phys Lett 89:163123Google Scholar
  73. 73.
    Jhi S, Louie SG, Cohen ML (2000) Electronic properties of oxidized carbon nanotubes. Phys Rev Lett 85:1710–1713CrossRefGoogle Scholar
  74. 74.
    Chen RJ, Franklin NR, Kong J, Cao J, Tombler TW, Zhang Y, Dai H (2001) Molecular photodesorption from single-walled carbon nanotubes. Appl Phys Lett 79:2258–2260CrossRefGoogle Scholar
  75. 75.
    Shiraishi M, Nakamura S, Fukao T, Takenobu T, Kataura H, Iwasa Y (2005) Control of injected carriers in tetracyano-p-quinodimethane encapsulated carbon nanotube transistors. Appl Phys Lett 87:093107CrossRefGoogle Scholar
  76. 76.
    Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2001) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65CrossRefGoogle Scholar
  77. 77.
    Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C (2006b) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6:1880–1886Google Scholar
  78. 78.
    Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan H, Kittrell C, Hauge RH, Tour JM, Smalley R (2003) Electronic structure control of single-walled carbon nanotube functionalization. Science 301:1519–1522CrossRefGoogle Scholar
  79. 79.
    Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709CrossRefGoogle Scholar
  80. 80.
    Austing DG, Lefebvre J, Bond J, Finnie P (2007) Carbon contacted nanotube field effect transistors. Appl Phys Lett 90:103112CrossRefGoogle Scholar
  81. 81.
    Takenobu T, Takahashi T, Takayoshi K, Tsukagoshi K, Aoyagi Y, Iwasa Y (2006) High-performance transparent flexible transistors using carbon nanotube films. Appl Phys Lett 88:033511CrossRefGoogle Scholar
  82. 82.
    Hur S, Yoon M, Gaur A, Shim M, Facchetti A, Marks TJ, Rogers JA (2005) Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates. J Am Chem Soc 127:13808–13809CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations