Overview of Flexible Electronics Technology

  • I-Chun Cheng
  • Sigurd Wagner
Part of the Electronic Materials: Science & Technology book series (EMST, volume 11)


This chapter provides an overview of the history, concepts, and possible applications of flexible electronics from the perspectives of materials and fabrication technology. The focus is on large-area capable electronic surfaces. These are made of backplane and frontplane optoelectronics that are fabricated as fully integrated circuits on flexible substrates. The discussion covers flexible electronics, and reaches back to rigid-substrate precursor technology where appropriate. Flexible electronics is a wide-open and rapidly developing field of research, development, pilot production, and field trials. The chapter puts a perspective on the technology by systematizing it and by describing representative examples.


Plasma Enhance Chemical Vapor Deposition Plastic Substrate Flexible Substrate Flexible Electronic Stainless Steel Foil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge support of their research by the United States Army Research Laboratory, the United States Display Consortium, Universal Display Corporation, Hewlett-Packard Laboratories, the DuPont Company, the National Institutes of Health, DARPA, the Eastman Kodak Company, and the New Jersey Commission for Science and Technology.


  1. 1.
    Crabb RL, Treble FC (Mar 25, 1967) Thin silicon solar cells for large flexible arrays. Nature 1223–1224Google Scholar
  2. 2.
    Ray KA (Jan, 1967) Flexible solar cell arrays for increased space power. IEEE Trans Aerosp Electron Syst v AES-3, n 107–115Google Scholar
  3. 3.
    Wronski CR, Carlson DE, Daniel RE (1976) Schottky-barrier characteristics of metal-amorphous-silicon diodes. Appl Phys Lett 29:602–604CrossRefGoogle Scholar
  4. 4.
    Plattner PD, Kruhler WW, Juergens W, Moller M (1980) ’80 Photovoltaic Solar Energy Conf p 121Google Scholar
  5. 5.
    Okaniwa H, Nakatani K, Asano M, Yano M, Hamakawa Y (1982) Production and properties of a-Si:H solar cell on organic polymer film substrate. In: Conference record of the sixteenth IEEE photovoltaic specialists conference – 1982, San Diego, CA, USA, Sep. 27–30, San Diego, CA, USA, 1982, pp 1111–1116Google Scholar
  6. 6.
    Okaniwa H, Nakatani K, Yano M, Asano M, Suzuki K (1982) Preparation and properties of a-Si:H solar cells on organic polymer film substrate. Jpn J Appl Phys 21:239–244Google Scholar
  7. 7.
    Okaniwa H, Nakatani K (1983) Flexible substrate solar cells. In: Hamakawa Y (ed) JARECT vol. 6. Amorphous Semiconductor Technologies & Devices. Ohusha, Tokyo, pp 239–250Google Scholar
  8. 8.
    Russell TWF, Rocheleau RE, Lutz PJ, Brestovansky DF, Baron BN (1982) Properties of continuously-deposited photovoltaic-grade CdS. In: Conference record of the sixteenth IEEE photovoltaic specialists conference – 1982, San Diego, CA, USA, Sep. 27–30, San Diego, CA, USA, pp 743–747Google Scholar
  9. 9.
    Nath P, Izu M (1985) Performance of large area amorphous Si-based single and multiple junction solar cells. In: Rec 18th IEEE Photovoltaic Specialists Conference. Las Vegas, NV, Oct 21–25, p 939Google Scholar
  10. 10.
    Yano M, Suzuki K, Nakatani K, Okaniwa H (1987) Roll-to-roll preparation of a hydrogenated amorphous silicon solar cell on a polymer substrate. Thin Solid Films 146:75–81CrossRefGoogle Scholar
  11. 11.
    Brody TP (1984) The thin-film transistor – A late flowering boom. IEEE Trans Electron Devices ED-31:1614–1628CrossRefGoogle Scholar
  12. 12.
    Brody TP (1996) The birth and early childhood of active matrix – A personal memoir. J Soc Inf Disp 4(3):113–127CrossRefGoogle Scholar
  13. 13.
    Constant A, Burns SG, Shanks H, Gruber C, Landin A, Schmidt D, Thielen C, Olympie F, Schumacher T, Cobbs J (1995) Development of thin film transistor based circuits on flexible polyimide substrates. Electrochem Soc Proc 94-35:392–400Google Scholar
  14. 14.
    Theiss SD, Wagner S (1996) Amorphous silicon thin-film transistors on steel foil substrates. IEEE Electron Device Lett 17:578–580CrossRefGoogle Scholar
  15. 15.
    Yang ND, Harkin G, Bunn RM, McCulloch DJ, Wilks RW, Knapp AG (1997) Novel fingerprint scanning arrays using polysilicon TFT’s on glass and polymer substrates. IEEE Electron Device Lett 18:19–20CrossRefGoogle Scholar
  16. 16.
    Smith PM, Carey PG, Sigmon TW (1997) Excimer laser crystallization and doping of silicon films on plastic substrates. Appl Phys Lett 70:342–344CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    Inoue S, Utsunomiya S, Saeki T, Shimoda T (2002) Surface-free technology by laser annealing and its application to poly-Si TFT–LCDs on plastic film with integrated drivers. IEEE Trans Electron Devices 49:1353–1360CrossRefGoogle Scholar
  21. 21.
    Lee Y, Li H, Fonash SJ (2003) High-performance poly-Si TFTs on plastic substrates using a nano-structured separation layer approach. IEEE Electron Device Lett 24:19–21CrossRefGoogle Scholar
  22. 22.
    Asano A, Kinoshita T (2002) Low-temperature polycrystalline-silicon TFT color LCD panel made of plastic substrates. Soc Inf Display Symp Digest Tech Papers 33: 1196–1199CrossRefGoogle Scholar
  23. 23.
    Berge C, Wagner T, Brendle W, Craff-Castillo C, Schubert MB, Werner JH (2003) Flexible monocrystalline Si films for thin film device from transfer process. Mat Res Soc Symp Proc 769, H. 2.7:53–58Google Scholar
  24. 24.
    Stewart R, Chiang A, Hermanns A, Vicentini F, Jacobsen J, Atherton J, Boiling E, Cuomo F, Drzaic P, Pearson S (2002) Rugged low-cost display systems. Proc SPIE – Int Soc Opt Eng 4712:350–356Google Scholar
  25. 25.
    Khang DY, Jiang H, Huang Y, Rogers JA (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311:208–212CrossRefGoogle Scholar
  26. 26.
    Sun Y, Choi WM, Jiang H, Huang YY, Rogers JA (2006) Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 1:201–207CrossRefGoogle Scholar
  27. 27.
    Gleskova H, Wagner S, Shen DS (1995) Electrophotographic patterning of thin-film silicon on glass foil. IEEE Electron Device Lett 16:418–420CrossRefGoogle Scholar
  28. 28.
    Wong WS, Ready SE, Matusiak R, White SD, Lu JP, Ho J, Street RA (2002) Amorphous silicon thin-film transistors and arrays fabricated by jet printing. Appl Phys Lett 24:610CrossRefGoogle Scholar
  29. 29.
    Garnier F, Hajlaouir R, Yassar A, Srivastava P (1994) All-polymer field-effect transistor realized by printing techniques. Science 265:1684–1686CrossRefGoogle Scholar
  30. 30.
    Ridley BA, Nivi B, Jacobson JM (1999) All-inorganic field effect transistors fabricated by printing. Science 286:746–749CrossRefGoogle Scholar
  31. 31.
    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290: 2123–2126CrossRefGoogle Scholar
  32. 32.
    Drury CJ, Mutsaers CMJ, Hart CM, Matters M, de Leeuw DM (1998) Low-cost all-polymer integrated circuits. Appl Phys Lett 73:108–110CrossRefGoogle Scholar
  33. 33.
    Wu CC, Theiss SD, Gu MH, Lu M, Sturm JC, Wagner S, Forrest SR (1997) Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates. IEEE Electron Device Lett 18:609–612CrossRefGoogle Scholar
  34. 34.
    Hsu PHI, Huang M, Wanger S, Suo Z, Sturm JC (2000) Plastic deformation of thin foil substrates with amorphous silicon islands into spherical shapes. Mat Res Soc Symp Proc 621:Q8.6Google Scholar
  35. 35.
    Hsu PHI, Bhattacharya R, Gleskova H, Huang M, Suo Z, Wagner S, Sturm JC (2002) Thin film transistor circuits on large-area spherical surfaces. Appl Phys Lett 81: 1723–1725CrossRefGoogle Scholar
  36. 36.
    Bhattacharya R, Wagner S, Tung YJ, Esler J, Hack M (2005) Organic LED pixel array on a dome. Proc IEEE 93:1273–1280Google Scholar
  37. 37.
    Bhattacharya R, Wagner S, Tung YJ, Esler J, Hack M (2006) Plastic deformation of a continuous organic light emitting surface. Appl Phys Lett 88:033507-1-3Google Scholar
  38. 38.
    Lacour SP, Wagner S, Huang Z, Suo Z (2003) Stretchable gold conductors on elastomeric substrates. Appl Phys Lett 82:2404–2406CrossRefGoogle Scholar
  39. 39.
    Gray DS, Tien J, Chen CS (2004) High-conductivity elastomeric electronics. Adv Mater 16:393–397CrossRefGoogle Scholar
  40. 40.
    Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T (2005) Conformable, flexible, wide-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Nat Acad Sci USA 102:12321–12325Google Scholar
  41. 41.
    Cannella V, Izu M, Jones S, Wagner S, Cheng IC (Jun, 2005) Flexible stainless-steel substrates. Inf Display24–27Google Scholar
  42. 42.
    Plichta A, Weber A, Habeck A, Glas S (2003) Ultra thin flexible glass substrates. Mat Res Soc Symp Proc 769:H9.1Google Scholar
  43. 43.
    Plichta A, Habeck A, Knoche S, Kruse A, Weber A, Hildebrand N (2005) Chapter 3: Flexible glass substrates. In: Grawford GP (ed) Flexible Flat Panel Displays. Wiley, England, pp 35–55Google Scholar
  44. 44.
    MacDonald WA (2004) Engineered films for display technologies. J Mater Chem 14:4–10CrossRefGoogle Scholar
  45. 45.
    Cheng IC, Kattamis A, Long K, Sturm JC, Wagner S (2005) Stress control for overlay registration in a-Si:H TFTs on flexible organic-polymer-foil substrates. J Soc Inf Disp 13(7): 563–568CrossRefGoogle Scholar
  46. 46.
    MacDonald BA, Rollins K, MacKerron D, Rakos K, Eveson R, Hashimoto K, Rustin B (2005) Chapter 2: Engineered films for display technologies. In: Grawford GP (ed) Flexible Flat Panel Displays. John, England, pp 11–33Google Scholar
  47. 47.
  48. 48.
    Lewis JS, Weaver MS (2004) Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J Selected Top Quantum Electron 10:45–57CrossRefGoogle Scholar
  49. 49.
    Haruki H, Uchida Y (1983) Stainless steel substrate amorphous silicon solar cell. In: Hamakawa Y (ed) JARECT, Amorphous Semiconductor Technologies & Devices. Ohusha, Tokyo, pp 216–227Google Scholar
  50. 50.
    Afentakis T, Hatalis M, Voutsas AT, Hartzell J (2006) Design and fabrication of high-performance polycrystalline silicon thin-film transistor circuits on flexible steel foils. IEEE Trans Electron Devices 53:815–822CrossRefGoogle Scholar
  51. 51.
    Ma EY, Wagner S (1999) Amorphous silicon transistors on ultrathin steel foil substrates. Appl Phys Lett 74:2661–2662CrossRefGoogle Scholar
  52. 52.
    Wu M, Bo XZ, Sturm JC, Wagner S (2002) Complementary metal–oxide–semiconductor thin-film transistor circuits from a high-temperature polycrystalline silicon process on steel foil substrates. IEEE Trans Electron Devices 49:1993–2000CrossRefGoogle Scholar
  53. 53.
    Snell AJ, Mackenzie KD, Spear WE, LeComber PG, Hughes AJ (1981) Application of amorphous silicon field effect transistors in addressable liquid crystal display panels. Appl Phys 24:357–362CrossRefGoogle Scholar
  54. 54.
    Gleskova H, Wagner S, Suo Z (1998) a-Si:H TFTs made on polyimide foil by PE-CVD at 150°C. Proc Mater Res Soc 508:73–78Google Scholar
  55. 55.
    Wu M, Pangal K, Sturm JC, Wagner S (1999) High electron mobility polycrystalline silicon thin-film transistors on steel foil substrates. Appl Phys Lett 75:2244–2246CrossRefGoogle Scholar
  56. 56.
    Howell R, Stewart M, Karnik S, Saha S, Hatalis M (2000) Poly-Si thin-film transistors on steel substrates. IEEE Electron Device Lett 21:70–72CrossRefGoogle Scholar
  57. 57.
    Sposili RS, Im JS (1996) Sequential lateral solidification of thin silicon films on SiO2. Appl Phys Lett 69:2864–2866CrossRefGoogle Scholar
  58. 58.
    Serikawa T, Omata F (1999) High-mobility poly-Si TFTs fabricated on flexible stainless steel substrates. IEEE Electron Device Lett 20:572–576CrossRefGoogle Scholar
  59. 59.
    Afentakis T, Hatalis M, Voutsas T, Hartzell J (2003) High performance polysilicon circuits on thin metal foils. Proc SPIE 5004:122–126Google Scholar
  60. 60.
    Heilmeier GH, Zanoni LA (1964) Surface studies of α-copper phthalocyanine films. J Phys Chem Solids 25:603–611CrossRefGoogle Scholar
  61. 61.
    Ebisawa F, Kurokawa T, Nara S (1983) Electrical properties of polyacetylene/polysiloxane interface. J Appl Phys 54:3255–3259CrossRefGoogle Scholar
  62. 62.
    Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 2:99–117CrossRefGoogle Scholar
  63. 63.
    Lin YY, Gundlach DJ, Nelson S, Jackson TN (1997) Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett 18: 606–608CrossRefGoogle Scholar
  64. 64.
    Schon JH, Kloc C, Batlogg B (2000) On the intrinsic limits of pentacene field-effect transistors. Org Electron 1:57–64CrossRefGoogle Scholar
  65. 65.
    Gelinck GH, Geuns TCT, de Leeuw DM (2000) High-performance all-polymer integrated circuits. Appl Phys Lett 77:1487–1489CrossRefGoogle Scholar
  66. 66.
    Kane MG, Campi J, Hammond MS, Cuomo FP, Greening B, Sheraw CD, Nichols JA, Gundlach DJ, Huang JR, Kuo CC, Jia L, Klauk H, Jackson TN (2000) Analog and digital circuits using organic thin-film transistors on polyester substrates. IEEE Electron Device Lett 21:534–536CrossRefGoogle Scholar
  67. 67.
    Rogers JA, Bao Z, Dodabalapur A, Makhija A (2000) Organic smart pixels and complementary inverter circuits formed on plastic substrates by casting and rubber stamping. IEEE Electron Device Lett 21:100–103CrossRefGoogle Scholar
  68. 68.
    Fix W, Ullmann A, Ficker J, Clemens W (2002) Fast polymer integrated circuits. Appl Phys Lett 81:1735–1737CrossRefGoogle Scholar
  69. 69.
    Lee MS, Kang HS, Kang HS, Joo J, Epstein AJ, Lee JY (2005) Flexible all-polymer field effect transistors with optical transparency using electrically conducting polymers. Thin Solid Films 477:169–173CrossRefGoogle Scholar
  70. 70.
    Dimitrakopoulos CD, Mascaro DJ (2001) Organic thin-film transistors: A review of recent advances. IBM J Res Dev 45:11–27CrossRefGoogle Scholar
  71. 71.
    Park SK, Kim YH, Han JI, Moon DG, Kim WK (2002) High-performance polymer TFTs printed on a plastic substrate. IEEE Trans Electron Devices 49:2008–2015CrossRefGoogle Scholar
  72. 72.
    Eder F, Klauk H, Halik M, Zschieschang U, Schmid G, Dehm C (2004) Organic electronics on paper. Appl Phys Lett 84:2673–2675CrossRefGoogle Scholar
  73. 73.
    Mach P, Rodriguez SJ, Nortrup R, Wiltzius P, Rogers JA (2001) Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors. Appl Phys Lett 78:3592–3594CrossRefGoogle Scholar
  74. 74.
    Sherwa CD, Zhou L, Huang JR, Gundlach DJ, Jackson TN, Kane MG, Hill IG, Hammond MS, Campi J, Greening BK, Francl J, West J (2002) Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl Phys Lett 80:1088–1090CrossRefGoogle Scholar
  75. 75.
    Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P (2001) Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Nat Acad Sci USA 98:4835–4840Google Scholar
  76. 76.
    Inoue Y, Fujisaki Y, Suzuki T, Tokito S, Kurita T, Mizukami M, Hirohata N, Tada T, Yagyu S (2004) Active-matrix OLED panel driven by organic TFTs. In: Proc Int Display Workshops (IDW), Niigata, Japan, pp 355–358Google Scholar
  77. 77.
    Zhou L, Wanga A, Wu SC, Sun J, Park S, Jackson TN (2006) All-organic active matrix flexible display. Appl Phys Lett 88:083502CrossRefGoogle Scholar
  78. 78.
    Mizukami M, Hirohata N, Iseki T, Ohtawara K, Tada T, Yagyu S, Abe T, Suzuki T, Fujisaki Y, Inoue Y, Tokito S, Kurita T (2006) Flexible AM OLED panel driven by bottom-contact OTFTs. IEEE Electron Device Lett 27:249–251CrossRefGoogle Scholar
  79. 79.
    Lee S, Koo B, Park JG, Moon H, Hahn J, Kim JM (2006) Development of high-performance organic thin-film transistors for large-area displays. MRS Bull 31:455–459CrossRefGoogle Scholar
  80. 80.
    Thomas G (1997) Invisible circuits. Nature 389:907–908CrossRefGoogle Scholar
  81. 81.
    Wager JF (2003) Transparent electronics. Science 300:1245–1246CrossRefGoogle Scholar
  82. 82.
    Hoffman RL, Norris BJ, Wager JF (2003) ZnO-based transparent thin-film transistors. Appl Phys Lett 82:733–735CrossRefGoogle Scholar
  83. 83.
    Seager CH, McIntyre DC, Warren WL, Tuttle BA (1996) Charge trapping and device behavior in ferroelectric memories. Appl Phys Lett 68:2660–2662CrossRefGoogle Scholar
  84. 84.
    Lavareda G, de Caryalho CN, Fortunato E, Ramos AR, Alves E, Conde O, Amaral A (2006) Transparent thin film transistors based on indium oxide semiconductor. J Non-Crystalline Solids 352:23–25CrossRefGoogle Scholar
  85. 85.
    Prins MWJ, Gross-Holz KO, Muller G, Cillessen JFM, Giesbers JB, Weening RP, Wolf RM (1996) A ferroelectric transparent thin-filn transistor. Appl Phys Lett 68:3650–3652CrossRefGoogle Scholar
  86. 86.
    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–492CrossRefGoogle Scholar
  87. 87.
    Hur SH, Park OO, Rogers JA (2005) Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors. Appl Phys Lett 86:243502CrossRefGoogle Scholar
  88. 88.
    Artukovic E, Kaempgen M, Hecht DS, Roth S, Gruner G (2005) Transparent and flexible carbon nanotube transistors. Nano Lett 5:757–760CrossRefGoogle Scholar
  89. 89.
    Takenobu T, Takahashi T, Kanbara T, Tsukaqoshi K, Aoyaqi Y, Iwasa Y (2006) High-performance transparent flexible transistors using carbon nanotube films. Appl Phys Lett 88:33511CrossRefGoogle Scholar
  90. 90.
    Ginley DS, Bright C (2000) Transparent conducting oxides. MRS Bull 25:15–18Google Scholar
  91. 91.
    Lewis BG, Paine DC (2000) Applications and processing of transparent conducting oxides. MRS Bull 25:22–27Google Scholar
  92. 92.
    Paine DC, Yeom HY, Yaglioglu B (2005) Chapter 5: Transparent conducting oxide materials and technology. In: Grawford GP (ed) Flexible Flat Panel Displays. Wiley, England, pp 80–98Google Scholar
  93. 93.
    Baedeker K (1907) Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Ann Phys 22:749–766CrossRefGoogle Scholar
  94. 94.
    Cairns DR, Witte RP II, Sparacin DK, Sachsman SM, Paine DC, Crawford GP, Newton RR (2000) Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl Phys Lett 76:1425–1427CrossRefGoogle Scholar
  95. 95.
    Bouten PCP, Slikkerveer PJ, Leterrier Y (2005) Chapter 6: Mechanics of ITO on plastic substrates for flexible displays. In: Grawford GP (ed) Flexible Flat Panel Displays. Wiley, England, p 117Google Scholar
  96. 96.
    “Bert” Groenendaal L (2005) Chapter 8: Conductive polymers. In: Grawford GP (ed) Flexible Flat Panel Displays. Wiley, England, p 157Google Scholar
  97. 97.
    Rubner M, Lee K, Tripathy S, Morris P, Georger J Jr, Jopson H (1984) Electrically conductive polyacetylene/elastomer blends. Mol Crystals Liquid Crystals 106:408CrossRefGoogle Scholar
  98. 98.
    Chiang LY, Wang LY, Kuo CS, Lin JG, Huang CY (1997) Synthesis of novel conducting elastomers as polyaniline-interpenetrated networks of fullerenol-polyurethanes. Synth Met 84:721–724CrossRefGoogle Scholar
  99. 99.
    EI-Tantawy F (2005) Development of novel functional conducting elastomer blends containing butyl rubber and low-density polyethylene for current switching, temperature sensor, and EMI shielding effectiveness applications. J Appl Polym Sci 97:1125–1138CrossRefGoogle Scholar
  100. 100.
    Xie J, Pecht M, DeDonato D, Hassanzadeh A (2001) An investigation of the mechanical behavior of conductive elastomer interconnects. Microelectron Reliab 41:281–286CrossRefGoogle Scholar
  101. 101.
    Tamai T (1982) Electrical properties of conductive elastomer as electrical contact material. IEEE Trans Compon Hybrids Manuf Technol 5:56–61Google Scholar
  102. 102.
    Lanotte L, Ausanio G, Barone AC, Campana C, Lannotti V, Luponio C, Pepe GP (2006) Giant resistivity change induced by strain in a composite of conducting particles in an elastomer matrix. Sens Actuators A (Phys) 127:56–62CrossRefGoogle Scholar
  103. 103.
    Gary DS, Tien J, Chen CS (2004) High-conductivity elastomeric electronics. Adv Mater 16:393–397CrossRefGoogle Scholar
  104. 104.
    Lacour SP, Tsay C, Wagner S (2004) An elastically stretchable TFT circuit. IEEE Electron Device Lett 25:792–794CrossRefGoogle Scholar
  105. 105.
    Lacour SP, Wagner S (2005) Thin film transistor circuits integrated onto elastomeric substrates for elastically stretchable electronics. IEEE IEDM 2005 Tech. Digest, IEEE, New York, paper 5.2Google Scholar
  106. 106.
    Crawford GP (2005) Chapter 16: Encapsulated liquid crystal materials for flexible display applications. In: Grawford GP (ed) Flexible Flat Panel Displays. Wiley, England, pp 313–330Google Scholar
  107. 107.
    Doane JW, Vaz NA, Wu BG, Zumer S (1986) Field controlled light scattering from nematic microdroplets. Appl Phys Lett 48:269–271CrossRefGoogle Scholar
  108. 108.
    Fergason JL (1985) Polymer encapsulated nematic liquid crystals for display and light control applications. SID Digest Tech Papers XVI:68–71Google Scholar
  109. 109.
    Drzaic PS (1986) Polymer-dispersed nematic liquid crystal for large area displays and light valves. J Appl Phys 60:2142–2148CrossRefGoogle Scholar
  110. 110.
    Doane JW (1990) Chapter 14: Polymer dispersed liquid crystal displays. In: Bahadur B (ed) Chapter 14, Liquid Crystals: Applications and Uses. World Scientific, Singapore, pp 361–395Google Scholar
  111. 111.
    Penz PA, Surtani K, Wen W, Johnson MR, Kane D, Sanders L, Culley B, Fish J (1981) Plastic substrate LCD. Proc SID XII:116–117Google Scholar
  112. 112.
    Takahashi S, Shimokawa O, Inoue H, Uehara K, Hirose T, Kikuyama A (1981) A liquid crystal display panel using polymer films. SID Digest Papers XII:86–87Google Scholar
  113. 113.
    Okada M, Hatano T, Hashimoto K (1997) Reflective multicolor display using cholesteric liquid crystals. SID Digest 28:1019–1022Google Scholar
  114. 114.
    Hashimoto K, Okada M, Nishiguchi K, Masazumi N, Yamakawa E, Taniguchi T (1998) Reflective color display using cholesteric liquid crystals. SID Digest 29:897–900Google Scholar
  115. 115.
    Khan A, Huang XY, Doane JW (2004) Low power cholesteric LCD and electronic book. Proceedings of the SPIE Defence and Securities Symposium, Orlando, FLGoogle Scholar
  116. 116.
    Stephenson S (2004) Development of flexible displays using photographic technology. SID Digest 35:774–777Google Scholar
  117. 117.
    Kim J, Vorflusev V, Kumar S (1999) Flexible display prepared using phase separated composite organic films of liquid crystals. Proc SID 30:880–885Google Scholar
  118. 118.
    Vogels JPA, Klink SI, Penterman R, de Koning H, Huitema EEA, Broer DJ (2004) Robust flexible LCDs with paintable technology. J SID 12:411–416Google Scholar
  119. 119.
    Metcalfe KA, Wright RJ (1956) Fine grain development in xerography. J Sci Instrum 33:194–195CrossRefGoogle Scholar
  120. 120.
    Evans PF, Lees H, Maltz M, Dailey J (1971) Color display devices. US Patent 3,612,758Google Scholar
  121. 121.
    Ota I, Ohnishi J, Yoshiyama M (1973) Electrophoretic image display panel. Proc IEEE 61:832–836Google Scholar
  122. 122.
    Hopper MA, Novotny V (1979) An electrophoretic display, its properties, model and addressing. IEEE Trans Electron Devices 26:1148–1151CrossRefGoogle Scholar
  123. 123.
    Blazo SF (1982) High resolution electrophoretic display with photoconductor addressing. SID Digest 82:92–93Google Scholar
  124. 124.
    Comiskey B, Albert JD, Yoshizawa H, Jacobson J (1998) An electrophoretic ink for all-printed reflective electronic displays. Nature 394:253–255CrossRefGoogle Scholar
  125. 125.
    Kawai H, Kanae N (1999) Microencapsulated electrophoretic rewritable sheet. SID Digest 30:1102–1105Google Scholar
  126. 126.
    Amundson K (2005) Chapter 19: Electrophoretic imaging films for electronic paper display. In: Grawford GP (ed) Flexible Flat Panel Displays Wiley, England, pp 381–382Google Scholar
  127. 127.
    Whitesides T, Walls M, Paolini R, Sohn S, Gates H, McCreary M, Jacobson J (2004) Towards video-rate microencapsulated dual-particle electrophoretic displays. SID Symp Digest Tech Papers 35:133–135CrossRefGoogle Scholar
  128. 128.
    Chen Y, Au J, Kazlas P, Ritenour A, Gates H, Coodman J (2002) Ultra-thin, high-resolution, flexible electronic ink displays addressed by a-Si active-matrix TFT backplanes on stainless steel foil. In: Technical Digest of IEDM, pp 389–392Google Scholar
  129. 129.
    Chen Y, Au J, Kazlas P, Ritenour A, Gates H, McCreary M (2003) Flexible actrive-matrix electronic ink display. Nature 423:136CrossRefGoogle Scholar
  130. 130.
  131. 131.
    Pope M, Kallmann HP, Magnante P (1963) Electroluminescence in organic crystals. J Chem Phys 38:2042–2043CrossRefGoogle Scholar
  132. 132.
    Mehl W, Buchner W (1965) Durch elektrochemische Doppelinjektion angeregte Elektrolumineszenz in Anthracen-Kristallen. Z. Krist Phys Chem 47:76CrossRefGoogle Scholar
  133. 133.
    Helfrich W, Schneider WG (1965) Recombination radiation in anthracene crystals. Phys Rev Lett 14:229–231CrossRefGoogle Scholar
  134. 134.
    Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51: 913–915CrossRefGoogle Scholar
  135. 135.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347: 539–541CrossRefGoogle Scholar
  136. 136.
    Braun D, Heeger AJ (1991) Visible-light emission from semiconducting polymer diodes. Appl Phys Lett 58:1982–1984CrossRefGoogle Scholar
  137. 137.
    Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ (1992) Flexible light-emitting diodes made from soluble conducting polymers. Nature 357:477–479CrossRefGoogle Scholar
  138. 138.
    Sarma KR, Schmidt J, Roush J, Chanley C, Dodd SR (2004) AMOLED using a-Si TFT backplane on flexible plastic substrate. Proc SPIE – Inter Soc Optical Eng 5443:165–176Google Scholar
  139. 139.
    Chuang TK, Roudbari AJ, Troccoli MN, Chang YL, Reed G, Hatalis M, Spirko J, Klier K, Preis S, Pearson R, Najafov H, Biaggio I, Afentakis T, Voutsas A, Forsythe E, Shi J, Blomquist S (2005) Active-matrix organic light-emitting displays on flexible metal foils. Proc SPIE – Inter Soc Optical Eng 5801:234–248Google Scholar
  140. 140.
    Chwang AB, Hack M, Brown JJ (2005) Flexible OLED display development: Strategy and status. J SID 13(6):481–486Google Scholar
  141. 141.
    Long K (2005) Flexible full-color active matrix organic light-emitting displays: Dry dye printing for OLED integration and 280°C amorphous-silicon thin-film transistors on clear plastic substrates. Princeton University Ph. D. ThesisGoogle Scholar
  142. 142.
    Hildner ML (2005) Chapter 15: OLED displays on plastic. In: Grawford GP (ed) Flexible Flat Panel Displays. Wiley, England, pp 285–312Google Scholar
  143. 143.
    Bulovic V, Gu G, Burrows PE, Forrest SR, Thompson ME (1996) Transparent light-emitting devices. Nature 380:29CrossRefGoogle Scholar
  144. 144.
    Lee KH, Ryu SY, Kwon JH, Kim SW, Chung HK (2003) QCIF full color transparent AMOLED display. Proc Soc Inform Display Symp Dig Tech Papers 34:104–107Google Scholar
  145. 145.
    Xu Y, Tai YC, Huang A, Ho CM (2002) IC-integrated flexible shear-stress sensor skin. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, SC, pp 354–357Google Scholar
  146. 146.
    Lorussi F, Scilingo EP, Tesconi M, Tognetti A, Rossi DD (2005) Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans Inf Technol Biomed 9:372–381CrossRefGoogle Scholar
  147. 147.
    Collins GP (Aug, 2004) Next stretch for plastic electronics. Sci Am 291(2):76–81CrossRefGoogle Scholar
  148. 148.
    Dong S, Cao H, Bai F, Yan L, Li JF, Viehland D (2004) Conformal sensor skin approach to the safety-monitoring of H2 fuel tanks. Appl Phys Lett 84:4153–4154CrossRefGoogle Scholar
  149. 149.
    Someya T, Sakurai T (2003) Integration of organic field-effect transistors and rubbery pressure sensors for artificial skin applications. 2003. IEEE International Electron Devices Meeting (IEDM), 8.4, Washington DC, Dec 8–10, pp 203–206Google Scholar
  150. 150.
    Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T (2004) A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Nat Acad Sci USA 101(27):9966–9970Google Scholar
  151. 151.
    Someya T, Kawaguchi H, Sakurai T (2004) Cut-and-Paste Organic FET Customized ICs for Application to Artificial Skin. 2004. IEEE International Solid-State Circuits Conference (ISSCC 2004), 16.2, San Francisco Marriott, San Francisco, CA, Feb 14–19, pp 288–289Google Scholar
  152. 152.
    Sekitani T, Iba S, Kato Y, Noguchi Y, Someya T, Sakurai T (2005) Ultraflexible organic field-effect transistors embedded at a neutral strain position. Appl Phys Lett 87:173502CrossRefGoogle Scholar
  153. 153.
    Graz I, Keplinger Ch, Schwödiauer R, Bauer S, Lacour SP, Wagner S (2006) Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones. Appl Phys Lett 88:073501-1-3Google Scholar
  154. 154.
    Pelrine R, Sommer-Larsen P, Kornbluh R, Heydt R, Kofod G, Pei Q, Gravesen P (2001) Applications of dielectric elastomer actuators. Proc SPIE 4329:335–349Google Scholar
  155. 155.
    Ashley S (Oct, 2003) Artificial muscles. Sci Am 289:52–59CrossRefGoogle Scholar
  156. 156.
    Lacour SP, Prahlad H, Pelrine R, Wagner S (2004) Mechatronic system of dielectric elastomer actuators addressed by thin film photoconductors on plastic. Sensors Actuators A Phys 111:288–292CrossRefGoogle Scholar
  157. 157.
    Moeli D, May-Plumlee T (2002) Interactive electronic textile development. J Textile Apparel, Technol Manage 2:1–12Google Scholar
  158. 158.
    Gould P (Oct, 2003) Textiles gain intelligence. Mater Today 10:38–43CrossRefGoogle Scholar
  159. 159.
    Bonderover E, Wagner S (2004) A woven inverter circuit for e-textile applications. IEEE Electron Device Lett 25:295–297CrossRefGoogle Scholar
  160. 160.
    Prins W, Hermans J (1959) Theory of permeation through metal coated polymer films. J Phys Chem 63:716–719CrossRefGoogle Scholar
  161. 161.
    Jamieson EHH, Windle AH (1983) Structure and oxygen-barrier properties of metallized polymer film. J Mater Sci 18:64–80CrossRefGoogle Scholar
  162. 162.
    Weiss J, Leppin C, Mader W, Salzberger U (1989) Aluminum metallization of polyester and polypropylene films: Properties and transmission electron microscopy microstructure investigations. Thin Solid Film 174:155CrossRefGoogle Scholar
  163. 163.
    Klemberg-Sapiepha JE, Martinu L, Kuttel OM, Wertheimer M (1993) Transparent gas barrier coatings by dual-frequency PECVD. 36th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, p 445Google Scholar
  164. 164.
    Philips RW, Markantes TM, LeGallee C (1993) Evaporated dielectric colorless films on PET and OPP exhibiting high barriers towards moisture and oxygen. 36th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, pp 293–301Google Scholar
  165. 165.
    Brody AL (Feb, 1994) Glass-coated flexible films for packaging: An overview. Packaging Technol Eng 44Google Scholar
  166. 166.
    Chatham H (1996) Review oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf Coatings Technol 78:1–9CrossRefGoogle Scholar
  167. 167.
    Shaw DG, Langlois MG (1994) Use of vapor deposited acrylate coatings to improve the barrier properties of metallized film. 37th Annual Technical Conference Proceedings of the Society of Vaccum Coaters, p 240Google Scholar
  168. 168.
    Affinito JD, Gross ME, Coronado CA, Graff GL, Greenwell EN, Martin PM (1996) A new method for fabricating transparent barrier layers. Thin Solid Films 290/291:63–67CrossRefGoogle Scholar
  169. 169.
    Weaver MS, Michalski LA, Rajan K, Rothman MA, Silvernail JA, Burrows PE, Graff GL, Gross ME,. Martin PE, Hall M, Mast E, Bonham C, Bennett W, Zumhoff M (2002) Organic light-emitting devices with extended operating lifetimes on plastic substrates. Appl Phys Lett 81:2929–2931CrossRefGoogle Scholar
  170. 170.
    Chwang AB, Rothman MA, Mao SY, Hewitt RH, Weaver MS, Silvernail JA, Rajan K, Hack M, Brown JJ, Chu X, Moro L, Krajewski T, Rutherford N (2003) Thin film encapsulated flexible OLED display. Appl Phys Lett 83:413–415CrossRefGoogle Scholar
  171. 171.
    Yoshida A, Fujimura S, Miyake T, Yoshizawa T, Ochi H, Sugimoto A, Kubota H, Miyadera T, Ishizuka S, Tsuchida M, Nakada H (2003) 3-inch Full-color OLED display using a plastic substrate. Proc Soc Inform Display Symp Dig Tech Papers 34:856–859Google Scholar
  172. 172.
    Graff GL, Williford RE, Burrows PE (2004) Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation. J Appl Phys 96:1840–1849CrossRefGoogle Scholar
  173. 173.
    Kim TW, Yan M, Erlat AG, McConnelee PA, Pellow M, Deluca J, Feost TP, Duggal AR, Schaepkens M (2005) Transparent hybrid inorganic/organic barrier coatings for plastic organic light-emitting diode substrates. J Vac Sci Technol A 23:971–977CrossRefGoogle Scholar
  174. 174.
    Ghosh AP, Gerenser LJ, Jarman CM, Fornalik JE (2005) Thin-film encapsulation of organic light-emitting devices. Appl Phys Lett 86:223503CrossRefGoogle Scholar
  175. 175.
    Carcia PF, McLean RS, Reilly MH, Groner MD, George SM (2006) Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers. Appl Phys Lett 89:031915CrossRefGoogle Scholar
  176. 176.
    Crawford GP (2005) Chapter 21: Roll-to-roll manufacturing of flexible displays. In: Grawford GP (ed) Flexible Flat Panel Displays. Wiley, England, pp 409–445Google Scholar
  177. 177.
    Yang J, Banerjee A, Guha S (2003) Amorphous silicon based photovoltaics – From earth to the “final frontier”. Solar Energy Mater Solar Cells 78:597–612CrossRefGoogle Scholar
  178. 178.
    Takano A, Tabuchi K, Uno M, Tanda M, Wada T, Shimosawa M, Sakakibara Y, Kiyofuji S, Nishihara H, Enomoto H, Kamoshita T (2006) Production technologies of film solar cell. Mater Res Soc Symp Proc 910:0910-A25-04CrossRefGoogle Scholar
  179. 179.
    Mei P, Jackson WB, Taussig CP, Jeans A (Jun 6, 2006) Forming a plurality of thin-film devices using imprint lithography. US Patent 7056834Google Scholar
  180. 180.
    Wagner S, Gleskova H, Sturm JC, Suo Z (2000) Novel processing technology for macroelectronics. In: Street RA (ed) Technology and Applications of Hydrogenated Amorphous Silicon. Springer, Berlin, pp 222–251Google Scholar
  181. 181.
    Shimoda T, Matsuki Y, Furusawa M, Aoki T, Yudasaka I, Tanaka H, Iwasawa H, Wang D, Miyasaka M, Takeuchi Y (2006) Solution-processed silicon films and transistors. Nature 440:783–786CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electrical Engineering, and Graduate Institute of Photonics and OptoelectronicsNational Taiwan UniversityTaipei10617 Taiwan

Personalised recommendations