Endocannabinoids in Alzheimer's Disease

  • María L. de Ceballos

Alzheimer's disease (AD), the major cause of dementia, is a chronic neurodegenerative disorder. Although our understanding of the cellular and molecular events involved in the pathophysiology of the disease has greatly advanced, few effective therapies had been introduced into the clinic. The characterization of the cannabinoid system has been defined during the last few years and cannabinoid-based therapies are beginning to be recognized for the treatment of different diseases. According to recent evidence, cannabinoid receptors are localized to senile plaques in AD brain, in particular in activated microglial cell clusters. On the other hand, cortical CB1 positive neurons are lost and CB1 receptor expression and functioning are markedly decreased in the neurologic disorder. Furthermore, in AD models, in vivo cannabinoids prevent the cognitive impairment, while reducing the loss of neuronal markers and of markers of gliosis. The beneficial effects of cannabinoids in preventing neurotoxicity induced by β-amyloid (Aβ) may rely on the anti-inflammatory properties of cannabinoids, given that they reduce the effects Aβ on microglial cells and on astrocytes, as judged by in vitro experiments, and can be brought about by both cannabinoid receptor-dependent and -independent mechanisms. These findings may set the basis for the use of these compounds, that combine both anti-inflammatory and neuroprotective actions, as a therapeutic approach for AD.


Microglial Cell Microglial Activation Senile Plaque Fatty Acid Amide Hydrolase Nitrite Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama H, Barg, S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy SA, Griffin WST, Hampel H, Hull M, Landreth G, Lue L-F, Mrak R, Mackenzie IR, McGeer PL, O’Banion K, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydell R, Shen Y, Sreit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421.CrossRefPubMedGoogle Scholar
  2. Aoyama K, Matsubara K, Fujikawa Y, Nagahiro Y, Shimizu K, Umegae N, Hayase N, Shiono H, Kobayashi S (2000) Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann Neurol 47:524–527.CrossRefPubMedGoogle Scholar
  3. Ashton JC, Friberg D, Darlington CL, Smith PF (2006) Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci Lett 396:113–116.CrossRefPubMedGoogle Scholar
  4. Bard F, Cannon C, Barbour R, Burke R-L, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberbug I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid t-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919.CrossRefPubMedGoogle Scholar
  5. Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid B protein toxicity. Cell 77:817–827.CrossRefPubMedGoogle Scholar
  6. Benito C, Núñez E, Tolón RM, Carrier EJ, Rábano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23:11136–11141.PubMedGoogle Scholar
  7. Benson A (2005) Alzheimer’s disease: a tangled issue. Drug Discov Today 10:749–751.CrossRefPubMedGoogle Scholar
  8. Broe GA, Grayson DA, Creasey HM, Waite LM, Casey BJ, Bennett HP, Brooks WS, Halliday GM (2000) Anti-inflammatory drugs protect against Alzheimer disease at low doses. Arch Neurol 57:1586–1591.CrossRefPubMedGoogle Scholar
  9. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contributes to neuronal death. Neurobiol Aging 23:655–664.CrossRefPubMedGoogle Scholar
  10. Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ, Justice A, McConlogue L, Games D, Freedman SB, Morris RG (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408:975–979.CrossRefPubMedGoogle Scholar
  11. Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE (1999) Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci 19:928–939.PubMedGoogle Scholar
  12. Combs CK, Karlo JC, Kao SC, Landreth GE (2001) Beta-amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21:1179–1188.PubMedGoogle Scholar
  13. de Ceballos ML, Guzmán M (2005) The role of cannabinois in preventing the neurodegenerative process occurring in Alzheimer’s disease. Drugs Fut 30:807–814.CrossRefGoogle Scholar
  14. Delobette S, Privat A, Maurice T (1997) In vitro aggregation facilitates -amyloid peptide-(25–35)-induced amnesia in the rat. Eur J Pharmacol 319:1–4.CrossRefPubMedGoogle Scholar
  15. Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen S-H (1988) Alzheimer’s disease: a double-labeling immunohistochemical study of senile plaques. Am J Pathol 132:86–101.PubMedGoogle Scholar
  16. Ehrhart J, Obregón D, Mori T, Hou H, Sun N, Bai Y, Klein T, Fernández F, Tan J (2005) Stimulation of cannabinoid receptor 2 (CB2) supresses microglial activation. J Neuroinflam 2:1–13.CrossRefGoogle Scholar
  17. Esposito G, De Filipis D, Carnuccio R, Izzo AA, Iuvone T (2006a) The marijuana component cannabidiol inhibits E-amyloid-induced tau protein hyperphosphorylation through Wnt/l-catenin pathway rescue PC12 cells. J Mol Med 84:253–258.CrossRefPubMedGoogle Scholar
  18. Esposito G, De Filipis D, Mauiuri MC, De Stefano D, Carnuccio R, Iuvone T (2006b) Cannabidiol inhibits nitric oxide synthase protein expression and nitric oxide production in p-amyloid stimulated PC12 neurons through p38 MAP kinase and NFmB involvement. Neurosci Lett 399:91–95.CrossRefPubMedGoogle Scholar
  19. Esposito G, De Filipis D, Steardo L, Scuderi C, Savani C, Cuomo V, Iuvone T (2006c) CB1 receptor selective activation inhibits i-amyloid-induced iNOS protein expression in C6 cells and subsequently blunts tau protein hyperphosphorylation in co-cultured neurons. Neurosci Lett 404:342–346.CrossRefPubMedGoogle Scholar
  20. Eubanks LM, Rogers CJ, Beuscher IV AE, Koob GF, Olson AJ, Dickerson TJ, Janda KD (2006) A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol Pharm 3:773–777.CrossRefPubMedGoogle Scholar
  21. Frautschy SA, Baird A, Cole GM (1991) Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci USA 88:8362–8366.CrossRefPubMedGoogle Scholar
  22. Frautschy SA, Cole GM, Baird A (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152:307–317.PubMedGoogle Scholar
  23. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F (1995) Alzheimer-type neuropathology in transgenic mice over-expressing V717F beta-amyloid precursor protein. Nature 373:523–527.CrossRefPubMedGoogle Scholar
  24. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706.CrossRefPubMedGoogle Scholar
  25. Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR (2006) Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 1071:10–23.CrossRefPubMedGoogle Scholar
  26. Haga S, Akai K, Ishii T (1989) Demonstration of microglial cells in and around senile (neuritic) plaques in the Alzheimer brain. An immunohistochemical study using a novel monoclonal antibody. Acta Neuropathol 77:569–575.CrossRefPubMedGoogle Scholar
  27. Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (-) Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 95:8268–8273.CrossRefPubMedGoogle Scholar
  28. Hampson RE, Simeral JD, Kelly EJ (2003) Tolerance to the memory disruptive effects of cannabinoids involves adaptation by hippocampal neurons. Hippocampus 13:543–556.CrossRefPubMedGoogle Scholar
  29. Hanus L, Breuer A, Tchilibon S, Shiloah S, Goldenberg D, Horowitz M, Pertwee RG, Ross RA, Mechoulam R, Fride E (1999) HU-308: a specific agonist for CB2, a peripheral cannabinoid receptor. Proc Natl Acad Sci USA 96:14228–14233.CrossRefPubMedGoogle Scholar
  30. Holcomb L, Gordon MN, McGowan MC, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada C, Eckman C, Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100.CrossRefPubMedGoogle Scholar
  31. Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rossa M, Izzo AA (2004) Neuroprotective effects of cannabidiol, a non-psychoactive component from Cannabis sativa, on D-amyloid-induced toxicity in PC12 cells. J Neurochem 89:134–141.CrossRefPubMedGoogle Scholar
  32. Jantzen PT, Connor KE, DiCarlo G, Wenk GL, Wallace GL, Rojiani AM, Coppola D, Morgan D, Gordo MN (2002) Microglial activation and p-amyloid deposit reduction caused by nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci 22:2246–2254.PubMedGoogle Scholar
  33. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D (2000) Abeta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982.CrossRefPubMedGoogle Scholar
  34. Klein TW (2005) Cannabinoid-based drugs and anti-inflammatory therapeutics. Nat Rev Immunol 5:400–411.CrossRefPubMedGoogle Scholar
  35. Kobayashi DM, Chen KS (2005) Behavioural phenotypes of amyloid-based genetically modified mouse models of Alzheimer’s disease. Genes Brain Behav 4:173–196.CrossRefPubMedGoogle Scholar
  36. Kowall NW, Beal MF, Busciglio J, Duffy LK, Yankner BA (1991) An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc Natl Acad Sci USA 88:7247–7251.CrossRefPubMedGoogle Scholar
  37. LaFerla FM, Oddo S (2005) Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 11:170–176.CrossRefPubMedGoogle Scholar
  38. Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, Bird TD, Schellenberg GD (1995) A familial Alzheimer’s disease locus on chromosome 1. Science 269:970–973.CrossRefPubMedGoogle Scholar
  39. Marsicano G, Moosmann B, Hermann HM, Lutz B, Behl C (2002) Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J Neurochem 80:448–456.CrossRefPubMedGoogle Scholar
  40. Martin JB (1999) Molecular basis of the neurodegenerative disorders. N Engl J Med 340:1970–1980.CrossRefPubMedGoogle Scholar
  41. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 5:631–639.CrossRefGoogle Scholar
  42. Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith-Swintosky VL, Rydel RE (1993) Beta-amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci 16:409–414.CrossRefPubMedGoogle Scholar
  43. Mattson MP, La Ferla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD (2000) Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 23:222–229.CrossRefPubMedGoogle Scholar
  44. Mazzola C, Micale V, Drago F (2003) Amnesia induced by M-amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur J Pharmacol 477:219–225.CrossRefPubMedGoogle Scholar
  45. McGeer PL, Itagak S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79:195–200.CrossRefPubMedGoogle Scholar
  46. Michaelis ML (2003) Drugs targeting Alzheimer’s disease: some things old and some things new. J Pharmacol Exp Ther 304:897–904.CrossRefPubMedGoogle Scholar
  47. Milton NGN (2002) Anandamide and noladin ether prevent neurotoxicity of the human amyloid-M peptide. Neurosci Lett 332:127–130.CrossRefPubMedGoogle Scholar
  48. Müller U, Cristina N, Li Z-W, Wolfer DP, Lipp H-P, Rulicke T, Brandner S, Aguzzi T, Weissmann C (1994) Behavioral and anatomical deficits in mice homozygous for a modified c-amyloid precursor protein. Cell 79:755–765.CrossRefPubMedGoogle Scholar
  49. Ong WY, Mackie K (1999) A light and electron microscopic study of the CB1 cannabinoid receptor in primate brain. Neuroscience 92:1177–1191.CrossRefPubMedGoogle Scholar
  50. Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breue A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531.CrossRefPubMedGoogle Scholar
  51. Ramírez BG, Blázquez C, Gómez del Pulgar T, Guzmán M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25:1904–1913.CrossRefPubMedGoogle Scholar
  52. Sánchez C, de Ceballos ML, Gómez del Pulgar T, Rueda D, Corbacho C, Velasco G, Galve-Roperh I, Huffman JW, Ramón y Cajal S, Guzmán M (2001) Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. Cancer Res 61:5784–5789.PubMedGoogle Scholar
  53. Scorer CA (2001) Preclinical and clinical challenges in the development of disease-modifying therapies for Alzheimer’s disease. Drug Discov Today 6:1207–1219.CrossRefPubMedGoogle Scholar
  54. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760.CrossRefPubMedGoogle Scholar
  55. Stella N (2004) Cannabinoid signalling in glial cells. Glia 48:267–277.CrossRefPubMedGoogle Scholar
  56. Tan J, Town T, Mori T, Saxe Y, Crawford F, Mullan M (2000) CD45 opposes T-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J Neurosci 20:7587–7594.PubMedGoogle Scholar
  57. van der Stelt M, Mazzola C, Esposito G, Matias I, Petrosino S, De Filipis D, Micale V, Steardo L, Drago F, Iuvone T, Di Marzo V (2006) Endocannabinoids and n-amyloid-induced nerurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell Mol Life Sci 63:1410–1424.CrossRefPubMedGoogle Scholar
  58. Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, Di Marzo V, Pittman QJ, Patel KD, Sharkey KA (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310:329–332.CrossRefPubMedGoogle Scholar
  59. Volicer L, Stelly M, Morris J, McLaughlin J, Volicer BJ (1997) Effects of dronabinol on anorexia and disturbed behaviour in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 12:913–919.CrossRefPubMedGoogle Scholar
  60. Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63:637–652.CrossRefPubMedGoogle Scholar
  61. Xie Z, Wei M, Morgan TE, Fabrizio P, Han D, Finch CE, Longo VD (2002) Peroxynitrite mediates neurotoxicity of amyloid o-peptide1–42 and lipopolysaccharide-activated microglia. J Neurosci 22:3484–3492.PubMedGoogle Scholar
  62. Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16:921–932.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • María L. de Ceballos
    • 1
  1. 1.Instituto Cajal, CSICMadridSpain

Personalised recommendations