Skip to main content

Chemical perturbations in the planetary boundary layer and their relevance for chemistry transport modelling

  • Original Paper
  • Chapter
Atmospheric Boundary Layers

Abstract

The role of perturbations of reactive trace gas concentration distributions in turbulent flows in the planetary boundary layer (PBL) is discussed. The paper focuses on disturbances with larger spatial scales. Sequential nesting of a chemical transport model is applied to assess the effect of neglecting subgrid chemical perturbations on the formation and loss of ozone, NO x , peroxyacetyl nitrate (PAN) and HNO3 calculated with a highly complex chemical mechanism. The results point to characteristic differences regarding the process of mixing of chemically reactive species in the PBL and lower troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Builtjes PJH (1981) A comparison between chemically reacting plume models and wind tunnel experiments. Paper presented at the12th ITM on Air Pollution and Its Application, Palo Alto, USA

    Google Scholar 

  2. Builtjes PJH, Talmon AM (1987) Macro- and micro-scale mixing in chemically reactive plumes. Boundary-Layer Meteorol 41:417–426

    Article  Google Scholar 

  3. Chang JS, Brost RA, Isaksen ISA, Madronich S, Middleton P, Stockwell WR, Walcek CJ (1987) A three-dimensional Eulerian acid deposition model: physical concepts and formulation. J Geophys Res 92:14681–14700

    Article  Google Scholar 

  4. Damköhler G (1940) Influence of turbulence on the velocity of flames in gas mixtures. Z Elektrochem 46:601–626

    Google Scholar 

  5. de Miguel A, Bilbao J (1999) Ozone dry deposition and resistances onto green grasland in summer in central Spain. J Atmos Chem 34:321–338

    Article  Google Scholar 

  6. Donaldson C du P, Hilst GR (1972) Effect of inhomogeneous mixing on atmospheric photochemical reactions. Environ Sci Technol 6:812–816

    Article  Google Scholar 

  7. Elperin T, Kleeorin N, Rogachevskii I (1998) Effect of chemical reactions and phase transitions on turbulent transport of particles and gases. Phys Rev Lett 80:69–72

    Article  Google Scholar 

  8. Finlayson-Pitts BJ, Pitts JN (1986) Atmospheric chemistry. John Wiley and Sons, New York, 1098 pp

    Google Scholar 

  9. Georgopoulos PG, Seinfeld JH (1986) Mathematical modeling of turbulent reacting plumes. Atmos Environ 20:1791–1807

    Article  Google Scholar 

  10. Hass H (1991) Description of the EURAD chemistry transport model version 2 (CTM2). Mitteilungen des Instituts für Geophysik und Meteorologie der Universität zu Koeln, no. 83, 100 pp

    Google Scholar 

  11. Hawthorne WR, Weddell DS, Hottel HC (1949) Mixing and combustion in turbulent gas jets. Paper presented at 3rd symp. on combustion, flame and explosion phenomena, Maryland, USA

    Google Scholar 

  12. Hellmuth O (2005) Conceptual study on nucleation burst evolution in the convective boundary layer – Part I: modelling approach. Atmos Chem Phys Disc 5:11413–11487

    Article  Google Scholar 

  13. Holtslag AAM, Nieuwstadt FTM (1986) Scaling the atmospheric boundary layer. Boundary-Layer Meteorol 36:201–209

    Article  Google Scholar 

  14. Jakobs HJ, Feldmann H, Hass H, Memmesheimer M (1995) The use of nested models for air pollution studies: an application of the EURAD model to a SANA episode. J Appl Meteorol 34:1301–1319

    Article  Google Scholar 

  15. Komori S, Hunt JCH, Kanzaki T, Murakami Y (1991) The effects of turbulent mixing on the correlation between two species and on concentration fluctuations in non-premixed reacting flows. J Fluid Mech 228:629–659

    Google Scholar 

  16. Kramm G, Meixner FX (2000) On the dispersion of trace species in the atmospheric boundary layer: a re-formulation of the governing equations for the turbulent flow of the compressible atmosphere. Tellus 52A:500–522

    Google Scholar 

  17. Kramm G, Dlugi R, Dollard GJ, Foken T, Mölders N, Müller H, Seiler W, Sievering H (1995) On the dry deposition of ozone and reactive nitrogen species. Atmos Environ 29:3209–3231

    Article  Google Scholar 

  18. Krol MC, Molemaker MJ, Vilà-Guerau de Arellano J (2000) Effects of turbulence and heterogeneous emissions on photochemically active species in the convective boundary layer. J Geophys Res 105:6871–6884

    Article  Google Scholar 

  19. Mallet V, Sportisse B (2006) Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: an ensemble approach applied to ozone modelling. J Geophys Res 111, D01302, doi:10.1029/2005JD006149

  20. Memmesheimer M, Roemer M, Ebel A (1997) Budget calculations for ozone and its precursers: seasonal and episodic features based on model simulations. J Atmos Chem 28:283–317

    Article  Google Scholar 

  21. Memmesheimer M, Jakobs HJ, Tippke J, Ebel A, Piekorz G, Weber M, Geiss H, Jansen S, Wickert B, Friedrich R, Schwarz U, Smiatek G (1999) Simulation of a summer-smog episode in July 1994 on the European and urban scale with special emphasis on the photo-oxidant plume of Berlin. In: Borrell PM, Borrel P (eds) Proceedings of the EUROTRAC Symposium ’98, WIT Press, Southampton, pp 591–595

    Google Scholar 

  22. Memmesheimer M, Friese E, Ebel A, Jakobs HJ, Feldmann H, Kessler C, Piekorz G (2004) Long-term simulations of particulate matter in Europe on different scales using sequential nesting of a regional model. Int J Environ Poll 22:108–132

    Google Scholar 

  23. Memmesheimer M, Friese E, Jakobs HJ, Kessler C, Feldmann H, Piekorz G, Ebel A (2005) OZURMI: Lokal geprägte Ozonspitzenwerte in Nordrhein-Westfalen – Ursachen und Minderungspotential für ein ausgewähltes Gebiet im Kölner Süden. Report, Landesumweltamt Nordrhein-Westfalen, Essen, November 2005, 274 pp

    Google Scholar 

  24. Miao J-F, Chen D, Wyser D (2006) Modelling subgrid scale dry deposition velocity of O3 over the Swedish west coast with MM5-PX model. Atmos Environ 40:415–429

    Article  Google Scholar 

  25. Niyogi DDS, Alapaty K, Raman S (2003) A photosynthesis-based dry deposition modelling approach. Water, Air Soil Pollut 144:171–194

    Article  Google Scholar 

  26. Schumann U (1989) Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos Environ 23:1713–1727

    Article  Google Scholar 

  27. Stockwell WR (1995) Effects of turbulence on gas-phase atmospheric chemistry: calculation of the relationship between time scales for diffusion and chemical reaction. Meteorol Atmos Phys 57:159–171

    Article  Google Scholar 

  28. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publ., Dordrecht, 666 pp

    Google Scholar 

  29. Sykes R, Parker S, Henn D, Lewellen W (1994) Turbulent mixing with chemical reactions in the planetary boundary layer. J Appl Meteorol 33:825–834

    Article  Google Scholar 

  30. Toor HL (1969) Turbulent mixing of two species with and without chemical reactions. Ind Eng Chem Fundam 8:655–659

    Article  Google Scholar 

  31. Verver GHI, van Dop H, Holtslag AAM (1997) Turbulent mixing of reactive gases in the convective boundary layer. Boundary-Layer Meteorol 85:197–222

    Article  Google Scholar 

  32. Vilà-Guerau de Arellano J, Talmon AM, Builtjes PJH (1990) A chemically reactive plume model for the NO–NO2–O3 system. Atmos Environ 24A: 2237–2246

    Google Scholar 

  33. Vilà-Guerau de Arellano J, Duynkerke PG, Builtjes PJH (1993a) The divergence of the turbulent diffusion flux due to chemical reactions in the surface layer: NO–O3–NO2 system. Tellus 45B:23–33

    Article  Google Scholar 

  34. Vilà-Guerau de Arellano J, Duynkerke PG, Jonker PJ, Builtjes PJH (1993b) An observational study on the effects of time and space averaging in photochemical models. Atmos Environ 27:353–362

    Google Scholar 

  35. Vilà-Guerau de Arellano J, Dosio A, Vinuesa J-F, Holtslag AAM, Galmarini S (2004) The dispersion of chemically reactive species in the atmospheric boundary layer. Meteorol Atmos Phys 87:23–28. DOI 10.1007/s0073–003–0059–2

    Google Scholar 

  36. Vilà-Guerau de Arellano J, Kim S-W, Barth MC, Patton EG (2005) Transport and chemical transformations influenced by shallow cumulus over land. Atmos Chem Phys 5:3219–3231

    Google Scholar 

  37. Vinuesa J-F, Vilà-Guerau de Arellano J (2005) Introducing effective reaction rates to account for inefficient mixing in the convective boundary layer. Atmos Environ 39:445–461

    Article  Google Scholar 

  38. Walcek CJ, Taylor GR (1986) A theoretical method for computing vertical distributions of acidity and sulphate production within growing cumulus clouds. J Atmos Sci 43:339–355

    Article  Google Scholar 

  39. Weber M (1999) Die Auswirkung der Nestung auf die Konzentrationen und Budgets ausgewählter Spurenstoffe während einer Sommersmogepisode. Diploma thesis, University of Cologne, Institute for Geophysics and Meteorology 146 pp

    Google Scholar 

  40. Wetzel MA, Slusser JR (2005) Mesoscale distributions of ultraviolet spectral irradiance, actinic flux, and photolysis rates derived from multispectral satellite data and radiative transfer models. Opt Eng 44(4):041006

    Article  Google Scholar 

  41. Zhang L, Brook JR, Vet R (2003) A revised parameterization for gaseous dry deposition in air-quality models. Atmos Chem Phys 3:2067–2082

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolf Ebel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, B.V.

About this chapter

Cite this chapter

Ebel, A., Memmesheimer, M., Jakobs, H.J. (2007). Chemical perturbations in the planetary boundary layer and their relevance for chemistry transport modelling. In: Baklanov, A., Grisogono, B. (eds) Atmospheric Boundary Layers. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74321-9_8

Download citation

Publish with us

Policies and ethics