Advertisement

Quantum Coupling in Quantum Dot Molecules

  • Xiulai Xu
  • Aleksey Andreev
  • David A. Williams
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 1)

Keywords

Quantum Coupling Antibonding State Indirect Exciton Plane Wave Expansion Method Increase Excitation Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2002)Google Scholar
  2. 2.
    D. Bouwmeester, A. K. Ekert, and A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, Springer, Berlin, Heidelberg, New York, Barcelona, Hongkong, London, Milan, Paris, Singapore, Tokyo, (2000)Google Scholar
  3. 3.
    D. P. Divicenzo et al., ArXiv: cond-ma/9911245Google Scholar
  4. 4.
    Y. Nakamura, Y. A. Pashkin and J. S. Tsai, Nature, 398, 786 (1999)CrossRefGoogle Scholar
  5. 5.
    J. E. Mooij et al., Science 285, 1036 (1999)CrossRefGoogle Scholar
  6. 6.
    B. Kane, Nature,393, 133 (1998)CrossRefGoogle Scholar
  7. 7.
    A. Imamoglu et al., Phys. Rev. Lett. 83, 4204 (1999)CrossRefGoogle Scholar
  8. 8.
    K. Hennessy et al., Nature, 445 1896 (2007)CrossRefGoogle Scholar
  9. 9.
    J. P. Reithmaier et al., Nature 432, 197–200 (2004)CrossRefGoogle Scholar
  10. 10.
    T. Yoshie et al., Nature 432, 200–203 (2004)CrossRefGoogle Scholar
  11. 11.
    L. Childress et al., Science,314, 281 (2006)CrossRefGoogle Scholar
  12. 12.
    John J. L. Morton et al., Nature Physics 2, 40 (2006)CrossRefGoogle Scholar
  13. 13.
    P. Michler, Single Quantum Dots, Springer, Berlin, Heidelberg, New York, Barcelona, Hongkong, London, Milan, Paris, Singapore, Tokyo, 2003Google Scholar
  14. 14.
    X. Q. Li et al., Science 301, 809 (2003)CrossRefGoogle Scholar
  15. 15.
    A. Zrenner et al., Nature 418, 612 (2002)CrossRefGoogle Scholar
  16. 16.
    D. Loss and D. P. DiVincenzo , Phys, Rev. A 57, 120 (1998)CrossRefGoogle Scholar
  17. 17.
    W. G. van der Wiel et al., Rev. Mod. Phys. 75, 1 (2002)CrossRefGoogle Scholar
  18. 18.
    T. Hayashi et al., Phys. Rev. Lett. 91, 226804 (2003)CrossRefGoogle Scholar
  19. 19.
    J. Gorman, D. G. Hasko and D. A. Williams, Phys. Rev. Lett. 95, 090502 (2005)CrossRefGoogle Scholar
  20. 20.
    A. Ekert, Phys. Rev. Lett. 67, 661 (1991)CrossRefGoogle Scholar
  21. 21.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935)CrossRefGoogle Scholar
  22. 22.
    P. Kok et al., Rev. Mod. Phys.79, 135–174, (2007)CrossRefGoogle Scholar
  23. 23.
    Paul G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995)CrossRefGoogle Scholar
  24. 24.
    R. M. Stevenson et al., Nature 439, 179–182 (2006)CrossRefGoogle Scholar
  25. 25.
    O. Gywat, G. Burkard and D. Loss, Superlattices and Microstructures 31, 127 (2002)Google Scholar
  26. 26.
    P. Borri et al., Phys. Rev. Lett. 91, 267401 (2003)CrossRefGoogle Scholar
  27. 27.
    M. Grundmann, O. Stier and D. Bimberg, Phys. Rev. B, 52, 11969 (1995)CrossRefGoogle Scholar
  28. 28.
    T. Benabbas, P. François, Y. Androussi and A. Lefebvre, J. Appl. Phys., 80 (5), 2763 (1996)CrossRefGoogle Scholar
  29. 29.
    M. A. Cusack, P. R. Briddon and M. Jaros, Phys. Rev. B, 54, R2300 (1996)CrossRefGoogle Scholar
  30. 30.
    J. R. Downes, D. A. Faux and E. P. O’Reilly, J. Appl. Phys. 81(10), 6700 (1997)CrossRefGoogle Scholar
  31. 31.
    J. D. Eshelby, Proc. R. Soc. London, Ser. A,241, 376 (1957)CrossRefGoogle Scholar
  32. 32.
    A. D. Andreev, J. R. Downes, D. A. Faux and E. P. O’Reilly, J. of Appl. Phys.,84, 297 (1999)CrossRefGoogle Scholar
  33. 33.
    I. M. Lifshits and L. N. Rosentsverg, Zhurnal Exper. and Teor. >Phiziki, 17, 9 (1947)Google Scholar
  34. 34.
    A. L. Efros and M. Rosen, Phys. Rev. B 58, 7120 (1998)CrossRefGoogle Scholar
  35. 35.
    A. D. Andreev, and A. A. Lipovskii, Phys. Rev. B 59, 15402 (1999)CrossRefGoogle Scholar
  36. 36.
    A. D. Andreev, and R. A. Suris, Semiconductors, 30, 285 (1996)Google Scholar
  37. 37.
    T. B. Bahder, Phys. Rev. B, 41, 11992 (1990)CrossRefGoogle Scholar
  38. 38.
    L. E. Vorobev et al., Semiconductors, 39 (1), 50 (2005)CrossRefGoogle Scholar
  39. 39.
    G. Schedelbeck et al., Science 278, 1792 (1997)CrossRefGoogle Scholar
  40. 40.
    X. L. Xu, D. A. Williams and J. R. A. Cleaver, Appl. Phys. Lett. 86, 012103 (2005)CrossRefGoogle Scholar
  41. 41.
    D. Leonard, K. Pond, and P. M. Petroff, Phys. Rev. B 50, 11687 (1994)Google Scholar
  42. 42.
    E. Moreau. et al, Phy. Rev. Lett.87, 183601 (2001)CrossRefGoogle Scholar
  43. 43.
    O. Brandt. et al., Phys. Rev. B 41, 12599 (1990)CrossRefGoogle Scholar
  44. 44.
    L. Landin et al., Phys. Rev. B 60, 16640 (1999)CrossRefGoogle Scholar
  45. 45.
    M. Bayer et al., Science 291, 451 (2001)CrossRefGoogle Scholar
  46. 46.
    L. Landin et al., Science 280, 262 (1998)CrossRefGoogle Scholar
  47. 47.
    M. Bayer, O. Stern, S. Fafard and A. Forchel, Nature (London) 405, 923 (2000)CrossRefGoogle Scholar
  48. 48.
    H. Kamada, A. Ando, J. Temmyo and T. Tamamura, Phys. Rev. B 58, 16243 (1998)CrossRefGoogle Scholar
  49. 49.
    G. Ortner et al., Phys. Rev. Lett. 90, 086404 (2003)CrossRefGoogle Scholar
  50. 50.
    O. Gywat, G. Burkard and D. Loss, Superlattices and Microstructures 31, 127 (2002)CrossRefGoogle Scholar
  51. 51.
    R. Songmuang, S. Kiravittaya and O. G. Schmidt, Appl. Phys. Lett. 82, 2892 (2003)CrossRefGoogle Scholar
  52. 52.
    T. V. Lippen, R. NÄotzel, G. J. Hamhuis and J. H. Wolter, Appl. Phys. Lett. 85, 118 (2004)CrossRefGoogle Scholar
  53. 53.
    X. Q. Li and Y. Arakawa, Phys. Rev. A63, 012302 (2000)CrossRefGoogle Scholar
  54. 54.
    J. M. Villas-Boas, A. O. Govorov and S. E. Ulloa, Phys. Rev. B 69, 125342 (2004)CrossRefGoogle Scholar
  55. 55.
    Q. Xie, P. Chen and A. Madhukar, Appl. Phys. Lett. 65, 2051 (1994)CrossRefGoogle Scholar
  56. 56.
    Q. Xie, A. Madhukar, P. Chen and N. P. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995)CrossRefGoogle Scholar
  57. 57.
    M. Hayne, et al., Phys. Rev. B62, 10324 (2000)CrossRefGoogle Scholar
  58. 58.
    J. Tersoff, C. Teichert and M. G. Lagally, Phys. Rev. Lett. 76, 1675 (1996)CrossRefGoogle Scholar
  59. 59.
    G. Springholz, V. Holy, M. Pinczolits and G. Bauer, Science282, 734 (1998)CrossRefGoogle Scholar
  60. 60.
    K. Ono, D. G. Austing, Y. Tokura and S. Tarucha, Science 297, 1313 (2002)CrossRefGoogle Scholar
  61. 61.
    G. Ortner et al., Phys. Rev. Lett. 94, 157401 (2005)CrossRefGoogle Scholar
  62. 62.
    H. J. Krenner et al., Phys. Rev. Lett. 94, 057402 (2005)CrossRefGoogle Scholar
  63. 63.
    E. A. Stinaff et al., Science 311, 636 (2006)CrossRefGoogle Scholar
  64. 64.
    N. Saito, et al., Jpn. J. Appl. Phys. 36, L896 (1997)CrossRefGoogle Scholar
  65. 65.
    M. Inai, et al., Jpn. J. Appl.Phys.32, L1718 (1993)CrossRefGoogle Scholar
  66. 66.
    B. Kaestner, D. H. Hasko and D. A. Williams, Jpn. J. Appl. Phys. 41, 2513 (2002)CrossRefGoogle Scholar
  67. 67.
    B. Kaestner, D. A. Williams and D. G. Hasko, Microelectronic Eng. 67–68, 797 (2003)CrossRefGoogle Scholar
  68. 68.
    X. L. Xu, D. A. Williams and J. R. A. Cleaver, Appl. Phys. Lett. 85, 3238 (2004)CrossRefGoogle Scholar
  69. 69.
    D. Leonard, K. Pond and P. M. Petroff, Phys. Rev. B 50, 11687 (1994)Google Scholar
  70. 70.
    X. L. Xu, A. Andreev, D. A. Williams and J. R. A. Cleaver, Appl. Phys. Lett. 89, 91120 (2006)CrossRefGoogle Scholar
  71. 71.
    W. Sheng and J.-P. Leburton, Phys. Rev. Lett. 88, 167401 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xiulai Xu
  • Aleksey Andreev
  • David A. Williams

There are no affiliations available

Personalised recommendations