Skip to main content

Dynamics of Carrier Transfer into In(Ga)As Self-assembled Quantum Dots

  • Chapter
Self-Assembled Quantum Dots

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Shah J (ed) (1992) Hot carriers in semiconductor nanostructures: Physics and applications. Academic Press, Boston

    Google Scholar 

  2. Shah J (1999) Ultrafast spectroscopy of semiconductors and semiconductor nanostructures. Springer, Berlin

    Google Scholar 

  3. Dekel E, Regelman DV, Gershoni D, Ehrenfreund E, Schoenfeld WV Petroff PM (2000) Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy. Phys Rev B 62: 11038–11045

    Article  CAS  Google Scholar 

  4. Finley JJ, Lemaître A, Ashmore AD, Mowbray DJ, Skolnick MS, Hopkinson M, Krauss TF (2001) Excitation and relaxation mechanisms in single In(Ga)As quantum dots. Phys Stat Sol (b) 224: 373–378

    Article  CAS  Google Scholar 

  5. Kono S, Kirihara A, Tomita A, Nakamura K, Fujikata J, Ohashi K, Saito H, Nishii K (2005) Excitonic molecule in a quantum dot: Photoluminescence lifetime of a single InAs/GaAs quantum dot. Phys Rev B 72: 155307

    Article  CAS  Google Scholar 

  6. Moskalenko ES, Larsson S, Schoenfeld WV, Petroff PM, Holtz PO (2006) Carrier transport in self-organized InAs/GaAs quantum-dot structures studied by single-dot spectroscopy. Phys Rev B 73: 155336

    Article  CAS  Google Scholar 

  7. Unold T, Mueller K, Lienau C, Elsaesser T (2004) Space and time resolved coherent optical spectroscopy of single quantum dots. Semicond Sci Technol 19: S260–S263

    Article  CAS  Google Scholar 

  8. Li X, Wu Y, Xu X, Steel DG, Gammon D (2006) Transient nonlinear optical spectroscopy studies involving biexciton coherence in single quantum dots. Phys Rev B 73: 153304

    Article  CAS  Google Scholar 

  9. Jacak L, Hawrylak P, Wójs A (1998) Quantum dots. Springer, Berlin

    Google Scholar 

  10. Bimberg D, Grundmann M, Ledentsov NN (1999) Quantum dot heterostructures. John Wiley and Sons, Chichester

    Google Scholar 

  11. Mukai K, Sugawara M (1999) The phonon bottleneck effect in quantum dots. In: Sugawara M (ed) Self-assembled InGaAs/GaAs quantum dots (Semiconductors and Semimetals vol 60) Academic Press, Boston, pp 209–240

    Google Scholar 

  12. Borri P (2002) Ultrafast optical properties of quantum dot amplifiers. In: Grundmann M (ed) Nano-optoelectronics: concepts, physics and devices. Springer, Berlin, pp 411–430

    Google Scholar 

  13. Ignatiev IV, Kozin IE (2002) Dynamics of carrier relaxation in self-assembled quantum dots. In: Masumoto Y, Takagahara T (eds) Semiconductor quantum dots: physics, spectroscopy and applications. Springer, Berlin, pp 245–293

    Google Scholar 

  14. Bockelmann U (2005) Carrier relaxation in nanostructures and its implication for optical properties. In: Bryant G, Solomon GS (eds) Optics of quantum dots and wires. Artech House, Boston, pp 35–55

    Google Scholar 

  15. Lipsanen H, Sopanen M, Tullki J (2005) Optical properties of quantum dots induced by self-assembled stressors. In: Bryant G, Solomon GS (eds) Optics of quantum dots and wires. Artech House, Boston, pp 97–131

    Google Scholar 

  16. Pan JL (1994) Intraband Auger processes and simple models of the ionization balance in semiconductor quantum-dot lasers. Phys Rev B 49: 11272–11287

    Article  CAS  Google Scholar 

  17. Ferreira R, Bastard G (1999) Phonon-assisted capture and intradot Auger relaxation in quantum dots. Appl Phys Lett 74: 2818–2820

    Article  CAS  Google Scholar 

  18. Magnusdottir I, Bischoff S, Uskov AV, Mørk J (2002) Geometry dependence of Auger carrier capture rates into cone-shaped self-assembled quantum dots. Phys Rev B 67: 205326

    Article  CAS  Google Scholar 

  19. Uskov AV, McInerney J, Adler F, Schweizer H, Pilkuhn MH (1998) Auger carrier capture kinetics in self-assembled quantum dot structures. Appl Phys Lett 72: 58–60

    Article  CAS  Google Scholar 

  20. Zhang J-Z, Galbraith I (2006) Rapid hot-electron capture in self-assembled quantum dots via phonon processes. Appl Phys Lett 89: 153119

    Article  CAS  Google Scholar 

  21. Magnusdottir I, Uskov AV, Bischoff S, Tromborg B, Mørk J (2002) One- and two-phonon capture processes in quantum dots. J Appl Phys 92: 5982–5990

    Google Scholar 

  22. Ohnesorge B, Albrecht M, Oshinowo J, Forchel A, Arakawa Y (1996) Rapid carrier relaxation in self-assembled InxGa1 - xAs/GaAs quantum dots. Phys Rev B 54: 11532–11538

    Article  CAS  Google Scholar 

  23. Ignatiev IV, Kozin IE, Davydov VG, Nair SV, Lee J-S, Ren H-W, Sugou S, Masumoto Y (2001) Phonon resonances in photoluminescence spectra of self-assembled quantum dots in an electric field. Phys Rev B 63: 075316

    Article  CAS  Google Scholar 

  24. Bockelmann U, Bastard G (1990) Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys Rev B 42: 8947–8951

    Article  CAS  Google Scholar 

  25. Benisty H, Sotomayor-Torrès CM, Weisbuch C (1991) Intrinsic mechanism for the poor luminescence of quantum-box systems. Phys Rev B 44: 10945–10948.

    Article  Google Scholar 

  26. Uskov AV, Adler F, Schweizer H, Pilkuhn MH (1997) Auger carrier relaxation in self-assembled quantum dots by collisions with two-dimensional carriers. J Appl Phys 81: 7895–7899

    Article  CAS  Google Scholar 

  27. Nielsen TR, Gartner P, Jahnke F (2004) Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys Rev B 69: 235314

    Article  CAS  Google Scholar 

  28. Narvaez GA, Bester G, Zunger A (2006) Carrier relaxation mechanisms in self-assembled (In,Ga)As/GaAs quantum dots: Efficient P → S Auger relaxation of electrons. Phys. Rev. B 74: 075403

    Article  CAS  Google Scholar 

  29. Li X-Q, Nakayama H, Arakawa Y (1999) Phonon bottleneck in quantum dots: Role of lifetime of the confined optical phonons. Phys Rev B 59: 506915

    Google Scholar 

  30. Verzelen O, Bastard G, Ferreira R (2002) Energy relaxation in quantum dots. Phys Rev B 66: 081308(R)

    Article  CAS  Google Scholar 

  31. Sercel PC (1995) Multiphonon-assisted tunneling through deep levels: A rapid energy-relaxation mechanism in nonideal quantum-dot heterostructures. Phys Rev B 51:14532–14541

    Google Scholar 

  32. Schroeter DF, Griffits DJ, Sercel PC (1996) Defect-assisted relaxation in quantum dots at low temperature. Phys Rev B 54: 1486: 1489

    Article  CAS  Google Scholar 

  33. Sercel P, Efros AL, Rosen M (1999) Intrinsic gap states in semiconductor nanocrystals. Phys Rev Lett 83: 2394–2397

    Article  CAS  Google Scholar 

  34. Siegert J, Marcinkevičius S, Zhao QX (2005) Carrier dynamics in modulation-doped InAs/GaAs quantum dots. Phys. Rev. B 72: 085316

    Article  CAS  Google Scholar 

  35. Leon R, Kim Y, Jagadish C, Gal M, Zou J, Cockayne DJH (1996) Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots. Appl Phys Lett 69: 1888–1890

    Article  CAS  Google Scholar 

  36. Leon R, Lobo C, Zou J, Romeo T, Cockayne DJH (1998) Stable and metastable InGaAs/GaAs island shapes and surfactantlike suppression of the wetting transformation. Phys Rev Lett 81: 2486–2489

    Article  CAS  Google Scholar 

  37. Leon R, Lobo C, Clark A, Bozek R, Wysmolek A, Kurpiewski A, Kaminska M (1998) Different paths to tunability in III–V quantum dots. J Appl Phys 84: 248–254

    Article  CAS  Google Scholar 

  38. Itskevich IE, Skolnick MS, Mowbray DJ, Trojan IA, Lyapin SG, Wilson LR, Steer MJ, Hopkinson M, Eaves L, Main PC (1999) Excited states and selection rules in self-assembled InAs/GaAs quantum dots. Phys Rev B 60: R2185–R2188

    Article  CAS  Google Scholar 

  39. Williamson AJ, Wang LW, Zunger A (2000) Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Phys Rev B 62: 12963–12977

    Article  CAS  Google Scholar 

  40. Schmidt KH, Medeiros-Ribeiro G, Oestreich M, Petroff PM, Döhler GH (1996) Carrier relaxation and electronic structure in InAs self-assembled quantum dots. Phys Rev B 54:11346–11353

    Article  CAS  Google Scholar 

  41. Warburton RJ, Dürr CS, Karrai K, Kotthaus JP, Medeiros-Ribeiro G, Petroff PM (1997) Charged excitons in self-assembled semiconductor quantum dots. Phys Rev Lett 79:5282–5285

    Article  CAS  Google Scholar 

  42. Chang W-H, Hsu TM, Yeh NT, Chyi J-I (2000) Electron distribution and level occupation in an ensemble of InxGa1 - xAs/GaAs self-assembled quantum dots. Phys Rev B 62: 13040–13047

    Article  CAS  Google Scholar 

  43. Chang W-H, Chen WY, Hsu TM, Yeah N-T, Chyi J-I (2002) Hole emission processes in InAs/GaAs self-assembled quantum dots. Phys Rev B 66: 195337

    Article  CAS  Google Scholar 

  44. Chu L, Zrenner A, Böhm G, Abstreiter G (2000) Lateral intersubband photocurrent spectroscopy on InAs/GaAs quantum dots. Appl Phys Lett 76: 1944–1946

    Article  CAS  Google Scholar 

  45. Raymond S, Fafard S, Poole PJ, Wojs A, Hawrylak P, Charbonneau S, Leonard D, Leon R, Petroff PM, Merz JL (1996) State filling and time-resolved photoluminescence of excited states in In_xGa1 - xAs/GaAs quantum dots. Phys Rev B 54: 11548–11554

    Article  CAS  Google Scholar 

  46. Müller T, Schrey FF, Strasser G, Unterrainer K (2003) Ultrafast intraband spectroscopy of electron capture and relaxation in InAs/GaAs quantum dots. Appl Phys Lett 83: 3572–3574

    Article  CAS  Google Scholar 

  47. Haacke S, Taylor RA, Bar-Joseph I, Brasil MJSP, Hartig M, Deveaud B (1998) Improving the signal-to-noise ratio of femtosecond luminescence upconversion by multichannel detection. J Opt Soc Am B 15: 1410–1417

    Article  CAS  Google Scholar 

  48. Oh I-K, Singh J, Thilagam A, Vengurlekar AS (2000) Exciton formation assisted by LO phonons in quantum wells. Phys Rev B 62: 2045–2050 and references therein

    Article  CAS  Google Scholar 

  49. Dawson P, Rubel O, Baranovskii SD, Pierz K, Thomas P, Göbel EO (2005) Temperature-dependent optical properties of InAs/GaAs quantum dots: Independent carrier versus exciton relaxation. Phys Rev B 72: 235301

    Article  CAS  Google Scholar 

  50. Quochi F, Dinu M, Bonadeo NH, Shah J, Pfeiffer LN, West KW, Platzman PM (2002) Ultrafast carrier dynamics in resonantly excited 1. 3-μ m InAs/GaAs self-assembled quantum dots. Physica B 314: 263–267

    Article  CAS  Google Scholar 

  51. Le Ru EC, Fack J, Murray R (2003) Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots. Phys Rev B 67: 245318

    Article  CAS  Google Scholar 

  52. Sosnovski TS, Norris TB, Jiang H, Singh J, Kamath K, Bhattacharya P (1998) Rapid carrier relaxation in In0. 4Ga0. 6As/GaAs quantum dots characterized by differential transmission spectroscopy. Phys Rev B 57: R9423–R9426

    Article  Google Scholar 

  53. Shchekin OB, Deppe DG, Lu D (2001) Fermi-level effect on the interdiffusion of InAs and InGaAs quantum dots. Appl Phys Lett 78: 3115–3117

    Article  CAS  Google Scholar 

  54. Heitz R, Veit M, Ledentsov NN, Hoffmann A, Bimberg D, Ustinov VM, Kop’ev PS, Alferov ZhI (1997) Energy relaxation by multiphonon processes in InAs/GaAs quantum dots. Phys Rev B 56: 10435–10445

    Article  CAS  Google Scholar 

  55. Deveaud B, Shah J, Damen TC, Lambert B, Chomette A, Regreny A (1988) Optical studies of perpendicular transport in semiconductor superlattices. IEEE J.Quantum Electron 24:1641–1651

    Article  CAS  Google Scholar 

  56. Marcinkevičius S, Olin U, Wallin J, Streubel K, Landgren G (1994) Photoexcited carrier transport in InGaAsP/InP quantum well laser structure. Appl Phys Lett 65: 2057–2059

    Article  Google Scholar 

  57. Raymond S, Hinzer K, Fafard S Merz JL (2000) Experimental determination of Auger capture coefficients in self-assembled quantum dots. Phys Rev B 61: R16331–R16334

    Article  CAS  Google Scholar 

  58. Sun KW, Chen JW, Lee BC, Lee CP, Kechiantz AM (2005) Carrier capture and relaxation in InAs quantum dots. Nanotechnology 16: 1530–1535

    Article  CAS  Google Scholar 

  59. Zhang L, Boggess TF, Gundogdu K, Flatté ME, Deppe DG, Cao C, Shchekin OB (2001) Excited-state dynamics and carrier capture in InGaAs/GaAs quantum dots. Appl Phys Lett 79: 3320–3322

    Article  CAS  Google Scholar 

  60. Urayama J, Norris TB, Jiang H, Singh J, Bhattacharya P (2002) Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots. Appl Phys Lett 80: 2162–2164

    Article  CAS  Google Scholar 

  61. Wesseli M, Ruppert C, Trumm S, Krenner HJ, Finley JJ, Betz M (2006) Nonequilibrium carrier dynamics in self-assembled InGaAs quantum dots. Phys Stat Sol (b) 243: 2217–2233

    Google Scholar 

  62. Bogaart EW, Haverkort JEM, Mano T, van Lippen T, Nötzel R, Wolter JH (2005) Role of continuum background for carrier relaxation in InAs quantum dots. Phys Rev B 72: 195301

    Article  CAS  Google Scholar 

  63. Feldmann J, Cundiff ST, Arzberger M, Böhm G, Abstreiter G (2001) Carrier capture into InAs/GaAs quantum dots via multiple optical phonon emission. J Appl Phys 89: 1180–1183

    Article  CAS  Google Scholar 

  64. Lobo C, Leon R, Marcinkevičius S, Yang W, Sercel PC, Liao XZ, Zou J, Cockayne DJH (1999) Inhibited carrier transfer in ensembles of isolated quantum dots. Phys Rev B 60:16647–16651

    Article  CAS  Google Scholar 

  65. Leon R, Marcinkevicius S, Liao XZ, Zou J, Cockayne DJH, Fafard S (1999) Ensemble interactions in strained semiconductor quantum dots. Phys Rev B 60: R8517–R8520

    Article  CAS  Google Scholar 

  66. Marcinkevičius S, Leon R (2000) Photoexcited carrier transfer in InGaAs quantum dot structures: Dependence on the dot density. Appl Phys Lett 76: 2406–2408

    Article  Google Scholar 

  67. Grundmann M, Ledentsov NN, Heitz R, Eckey L, Christen J, Böhrer J, Bimberg D, Ruvimov SS, Werner P, Richter U, Heydenreich J, Ustinov VM, Egorov AYu, Zhukov AE, Kopev PS, Alferov ZhI (1995) InAs/GaAs quantum dots radiative recombination from zero-dimensional states. Phys Stat Sol (b) 188: 249–258

    Article  CAS  Google Scholar 

  68. Williamson AJ, Zunger A (1999) InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structues. Phys Rev B 59: 15819–15824

    Article  CAS  Google Scholar 

  69. Wang HL, Yang FH, Feng SL, Zhu HJ, Ning D, Wang H, Wang XD, (2000) Experimental determination of local strain effect on InAs/GaAs self-organized quantum dots. Phys Rev B 61: 5530–5534

    Article  CAS  Google Scholar 

  70. Popescu DP, Eliseev PG, Stintz A, Malloy KJ (2004) Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0. 85In0. 15 As quantum well. Semicond Sci Technol 19: 33–38

    Article  CAS  Google Scholar 

  71. Leon R, Marcinkevicius S, Siegert J, CechaviCius B, Magness B, Taylor WA, Lobo C (2002) Effects of proton irradiation on luminescence emission and carrier dynamics of self-assembled III-V quantum dots. IEEE Trans Nuclear Sci 49: 2844–2851

    Article  CAS  Google Scholar 

  72. Marcinkevičius S, Siegert J, Leon R, CechaviCius B, Magness B, Taylor W, Lobo C (2002) Changes in luminescence intensities and carrier dynamics induced by proton irradiation in InGaAs/GaAs quantum dots. Phys Rev B 66: 235314

    Article  CAS  Google Scholar 

  73. Ji Y, Chen G, Tang N, Wang Q, Wang XG, Shao J, Chen XS, Lu W (2003) Proton-implantation-induced photoluminescence enhancement in self-assembled InAs/GaAs quantum dots. Appl Phys Lett 62: 2802–2804

    Article  CAS  Google Scholar 

  74. Ferrini R, Galli M, Guizzetti G, Patrini M, Nava F, Canali C, Vanni P (1997) Optical evaluation of the ionized EL2 fraction in proton (24 GeV) irradiated semi-insulating GaAs. Appl Phys Lett 71: 3084–3086

    Article  CAS  Google Scholar 

  75. Inoshita T, Sakaki H (1992) Electron relaxation in a quantum dot: Significance of multiphonon processes. Phys Rev B 46: 7260–7263

    Article  Google Scholar 

  76. Marcinkevičius S, Leon R (1997) Carrier dynamics in InGaAs/GaAs quantum dots. Phys Stat Sol (b) 204: 290–292

    Article  Google Scholar 

  77. Gündogdu K, Hall KC, Boggess TF, Deppe DG, Shchekin OB (2004) Ultrafast electron capture into p-modulation-doped quantum dots. Appl Phys Lett 85: 4570–4572

    Article  CAS  Google Scholar 

  78. Bockelmann U, Egeler T (1992) Electron relaxation in quantum dots by means of Auger scattering. Phys Rev B 46: 15574–15577

    Article  CAS  Google Scholar 

  79. Urayama J, Norris TB, Singh J, Bhattacharya P (2001) Observation of phonon bottleneck in quantum dot electronic relaxation. Phys Rev Lett 86: 4930–4933

    Article  CAS  Google Scholar 

  80. Sauvage S, Boucaud P, Glotin F, Prazeres R, Ortega J-M, Lemaître A, Gérard J-M, Thierry-Flieg V (1998) Saturation of intraband absorption and electron relaxation time in n-doped InAs/GaAs self-assembled quantum dots. Appl Phys Lett 73: 3818–3820

    Article  CAS  Google Scholar 

  81. Steer MJ, Mowbray DJ, Tribe WR, Skolnick MS, Sturge MD, Hopkinson M, Cullis AG, Whitehouse CR, Murray R (1996) Electronic energy levels and energy relaxation mechanisms in self-organized InAs/GaAs quantum dots. Phys Rev B 54: 17738–17744

    Article  CAS  Google Scholar 

  82. MarcinkeviCius S, Gaarder A, Leon R (2001) Rapid carrier relaxation by phonon emission in InGaAs/GaAs quantum dots. Phys Rev B 64: 115307

    Article  CAS  Google Scholar 

  83. Malik S, Le Ru EC, Childs D, Murray R (2001) Time-resolved studies of annealed InAs/GaAs self-assembled quantum dots. Phys Rev B 63: 155313

    Article  CAS  Google Scholar 

  84. MarcinkeviCius S and Leon R (1999) Carrier capture and escape in In_xGa1 - xAs/GaAs quantum dots: Effects of intermixing. Phys Rev B 59: 4630–4633

    Article  CAS  Google Scholar 

  85. Yuan ZL, Foo ERAD, Ryan JF, Mowbray DJ, Skolnick MS, Hopkinson M (1999) Many-body effects in carrier capture and energy relaxation in self-organized InAs/GaAs quantum dots. Physica B 272: 12–14

    Article  CAS  Google Scholar 

  86. Morris D, Perret N, Fafard S (1999) Carrier energy relaxation by means of Auger processes in InAs/GaAs self-assembled quantum dots. Appl Phys Lett 75: 3593–3595

    Article  CAS  Google Scholar 

  87. Toda Y, Moriwaki O, Nishioka M, Arakawa Y (1999) Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states. Phys Rev Lett 82: 4114–4117

    Article  CAS  Google Scholar 

  88. Finley JJ, Ashmore AD, Lemaître A, Mowbray DJ, Skolnick MS, Itskevich IE, Maksym PA, Hopkinson M, Krauss TF (2005) Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots. Phys Rev B 63: 073307

    Article  CAS  Google Scholar 

  89. Kammerer C, Cassabois G, Voisin C, Delalande C, Roussignol Ph, Gérard J-M (2001) Photoluminescence up-conversion in single self-assembled InAs/GaAs quantum dots. Phys Rev Lett 87: 207401

    Article  CAS  Google Scholar 

  90. Vasanelli A, Ferreira R, Bastard G (2002) Continuous absorption background and decoherence in quantum dots. Phys Rev Lett 89: 216804

    Article  CAS  Google Scholar 

  91. Oulton R, Finley JJ, Tartakovskii AI, Mowbray DJ, Skolnick MS, Hopkinson M, Vasanelli A, Ferreira R, Bastard G (2003) Continuum transitions and phonon coupling in single self-assembled Stranski-Krastanow quantum dots. Phys Rev B 68: 235301

    Article  CAS  Google Scholar 

  92. Monte AFG, Finley JJ, Ashmore AD, Fox AM, Mowbray DJ, Skolnick MS, Hopkinson M (2003) Carrier dynamics in short wavelength self-assembled InAs/Al0.6Ga0.4As quantum dots with indirect barriers. J Appl Phys 93: 3524–3528

    Article  CAS  Google Scholar 

  93. Borri P, Langbein W, Hwam JM, Heinrichsdorff F, Mao M-H, Bimberg D (2000) Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE J. Selected Topics Quantum Electron. 6: 544–551

    Article  CAS  Google Scholar 

  94. Schneider S, Borri P, Langbein W, Woggon U, Sellin RL, Ouyang D, Bimberg D (2005) Excited-State Gain Dynamics in InGaAsQuantum-Dot Amplifiers. IEEE Photon Technology Lett 17: 2014–2016

    Article  CAS  Google Scholar 

  95. Akiyama T, Kuwatsuka H, Simoyama T, Nakata Y, Mukai K, Ishikawa H (2001) Ultrafast nonlinear processes in quantum-dot optical amplifiers. Opt. Quantum Electron. 33: 927–938

    Article  Google Scholar 

  96. Berg TW, Bishoff S, Magnusdottir I, Mørk J (2001) Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices. IEEE Photon Technology Lett 13: 541–543

    Article  Google Scholar 

  97. Van der Poel M, Gehrig E, Hess O, Birkedal D, Hvam JM (2005) Ultrafast gain dynamics in quantum-dot amplifiers: theoretical analysis and experimental investigations. IEEE J. Quantum Electron. 41: 1115–1123

    Article  CAS  Google Scholar 

  98. Van der Poel M, Mørk J, Somers A, Forchel A, Reithmaier JP, Eisenstein G (2006) Ultrafast gain and index dynamics of quantum dash structures emitting at 1. 55 μ m. Appl. Phys. Lett. 89: 81102

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marcinkevičius, S. (2008). Dynamics of Carrier Transfer into In(Ga)As Self-assembled Quantum Dots. In: Wang, Z.M. (eds) Self-Assembled Quantum Dots. Lecture Notes in Nanoscale Science and Technology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74191-8_5

Download citation

Publish with us

Policies and ethics