Advertisement

Stress Relaxation Phenomena in Buried Quantum Dots

  • N.A. Bert
  • V.V. Chaldyshev
  • A.L. Kolesnikova
  • A.E. Romanov
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 1)

Keywords

Burger Vector Dislocation Loop Apply Physic Letter Moire Fringe Native Point Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akinaga H, Mizuguchi M, Ono K, Oshima M (2000) Room-temperature thousandfold magnetoresistance change in MnSb granular films: Magnetoresistive switch effect. Applied Physics Letters 76: 357–359CrossRefGoogle Scholar
  2. 2.
    Andreev AD, Downes JR, Faux DA, O’Reilly EP (1999) Strain distributions in quantum dots of arbitrary shapes. Journal of Applied Physics 86: 297–305CrossRefGoogle Scholar
  3. 3.
    Andreev AD, O’Reilly EP (2000) Theoretical study of the electronic structure of self-organized GaN/AlN QDs. Nanotechnology 11: 256–262CrossRefGoogle Scholar
  4. 4.
    Beanland R, Dunstan DJ, Goodhew PJ (1996) Plastic relaxation and relaxed buffer layers for semiconductor energy. Advances in Physics, 45: 87–146CrossRefGoogle Scholar
  5. 5.
    Bert NA, Chaldyshev VV (1996) Changes in the Moire patterns in electron-microscope images of As clusters in LT-GaAs as their size decreases. Semiconductors 30: 988–989Google Scholar
  6. 6.
    Bert NA, Chaldyshev VV, Faleev NN, Kunitsyn AE, Lubyshev DI, Preobrazhenskii VV, Semyagin BR, Tret’yakov VV (1997) Two-dimensional precipitation of As clusters due to indium delta-doping of GaAs films grown by molecular beam epitaxy at low temperature. Semiconduct. Science and Technology 12: 51–54CrossRefGoogle Scholar
  7. 7.
    Bert NA, Chaldyshev VV, Suvorova AA, Preobrazhenskii VV, Putyato MA, Semyagin BR, Werner P (1999) Enhanced precipitation of excess As on antimony delta layers in low-temperature-grown GaAs. Applied Physics Letters 74: 1588–1590CrossRefGoogle Scholar
  8. 8.
    Bert NA, Kolesnikova AL, Romanov AE, Chaldyshev VV (2002) Elastic behaviour of a spherical inclusion with given uniaxial dilatation. Physics of the Solid State 44: 2240–2250Google Scholar
  9. 9.
    Bert NA, Veinger AI, Vilisova MD, Goloshchapov SI, Ivonin IV, Kozyrev SV, Kunitsyn AE, Lavrent’eva LG, Lubyshev DI, Preobrazhenskii VV, Semyagin BR, Tretyakov VV, Chaldyshev VV, Yakubenya MP (1993) Gallium-arsenide grown by molecular-beam epitaxy at low temperature: crystalline structure, properties, superconductivity. Physics of the Solid State 35: 1289–1297Google Scholar
  10. 10.
    Bimberg D, Grundmann M, Ledentsov NN, Ruvimov SS, Werner P, Richter U, Gösele U, Heydenreich J, Ustinov VM, Kop’ev PS, Alferov ZI (1995) Self-organization processes in MBE-grown quantum dot structures. Thin Solid Films 267: 32–36CrossRefGoogle Scholar
  11. 11.
    Chaldyshev VV (2002) Two-dimensional organization of As clusters in GaAs. Materials Science & Engineering B 88: 85–94CrossRefGoogle Scholar
  12. 12.
    Chaldyshev VV, Bert NA, Musikhin YG, Suvorova AA, Preobrazhenskii VV, Putyato MA, Semyagin BR, Werner P, Gosele U (2001) Enhanced As-Sb intermixing of GaSb monolayer superlattice in low-temperature-grown GaAs. Applied Physics Letters 79: 1294–1296CrossRefGoogle Scholar
  13. 13.
    Chaldyshev VV, Bert NA, Romanov AE, Suvorova AA, Kolesnikova AL, Preobrazhenskii VV, Putyato MA, Semyagin BR, Werner P, Zakharov ND, Claverie A (2002) Local stresses induced by nanoscale As-Sb clusters in GaAs matrix. Applied Physics Letters 80: 377–379CrossRefGoogle Scholar
  14. 14.
    Chaldyshev VV, Kolesnikova AL, Bert NA, Romanov AE (2005) Investigation of dislocation loops with As-Sb nanoclusters in GaAs. Journal of Applied Physics 97: 024309(1-10)CrossRefGoogle Scholar
  15. 15.
    Chiu YP (1977) On the stress field due to initial strain in a cuboid surrounded by an infinite elastic space. Journal of Applied Mechanics 44: 587–590Google Scholar
  16. 16.
    Chu SNG and Nakahara S (1990) 100 100 dislocation loops in zinc blend structure. Applied Physics Letters 56: 434–436CrossRefGoogle Scholar
  17. 17.
    Claverie A, Liliental-Weber Z (1993) Extended defects and precipitates in LT-GaAs, LT-InAlAs and LT-InP. Material Science and Engineering B 22: 45–54Google Scholar
  18. 18.
    DeBoeck J, Oesterholt R, VanEsch A, Bender H, Bruynseraede C, VanHoof C, Borghs G (1996) Nanometer-scale magnetic MnAs particles in GaAs grown by molecular beam epitaxy. Applied Physics Letters 68: 2744–2746CrossRefGoogle Scholar
  19. 19.
    Devis JH (1998) Elastic and piezoelectric fields around a buried quantum dot: a simple picture. Journal of Applied Physics 84: 1358–1365CrossRefGoogle Scholar
  20. 20.
    Dregia SA, Hirth, JP (1991) A rebound mechanism for Lomer dislocation formation in strained layer structures. Journal of Applied Physics 69: 2169–2175CrossRefGoogle Scholar
  21. 21.
    Duan HL, Karihaloo BL, Wang J, Yi X (2006) Compatible composition and critical sizes of alloyed quantum dots. Physical Review B 74: 195328(4)Google Scholar
  22. 22.
    Duan HL, Wang J, Huang ZP (2005) Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society of London A 461: 3335–3353Google Scholar
  23. 23.
    Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion. Proceedings of the Royal Society of London A 241: 376–396Google Scholar
  24. 24.
    Eshelby JD (1959) The elastic field outside in ellipsoidal inclusion. Proceedings of the Royal Society of London A 252: 561–569CrossRefGoogle Scholar
  25. 25.
    Faleev NN, Chaldyshev VV, Kunitsyn AE, Tret’yakov VV, Preobrazhenskii VV, Putyato MA, Semyagin BR (1998) High-resolution x-ray diffraction study of InAs-GaAs superlattices grown by molecular-beam epitaxy at low temperature. Semiconductors 32: 19–25CrossRefGoogle Scholar
  26. 26.
    Fischer FD, Böhm HJ (2005) On the role of the transformation eigenstrain in the growth or shrinkage of spheroidal isotropic precipitations. Acta Materialia 53: 367–374CrossRefGoogle Scholar
  27. 27.
    Fischer FD, Böhm HJ, Oberaigner ER, Waitz T (2006) The role of elastic contrast on strain energy and the stresses state of a spheroidal inclusion with a general eigenstrain state. Acta Materialia 54: 151–156CrossRefGoogle Scholar
  28. 28.
    Freund LB, Suresh S (2003) Thin film materials: Stress, defect formation and surface evolution. Cambrige University Press, CambridgeGoogle Scholar
  29. 29.
    Glas F (2001) Elastic relaxation of truncated pyramidal quantum dots and quantum wires in a half space: An analytical calculation. Journal of Applied Physics 90: 3232–3241CrossRefGoogle Scholar
  30. 30.
    Goodier JN (1937) On the integration of the thermo-elastic equations. Philosophical Magazine 23: 1017–1032Google Scholar
  31. 31.
    Guha S, Madhukar A, Rajkumar KC (1990) Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxical growth of highly strained In_xGa1 - xAs on GaAs(100) Applied Phys.ics Letters 57: 2110–2112CrossRefGoogle Scholar
  32. 32.
    Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New-YorkGoogle Scholar
  33. 33.
    Jin-Phillipp NY, Phillipp F (1999) Defect formation in self-assembling quantum dots of InGaAs on GaAs: a case study of direct measurements of local strain from HREM. Journal of Microscopy 194: 161–170CrossRefGoogle Scholar
  34. 34.
    Jogai B (2001) Tree-dimensional strain field calculations in multiple InN/AlN wurzite quantum dots. Journal of Applied Physics 90: 699–704CrossRefGoogle Scholar
  35. 35.
    Kolesnikova AL, Romanov AE (1986) Circular dislocation-disclination loops and their application to boundary problem solution in the theory of defects. Physico-Technical Institute Preprint No 1019, Leningrad (in Russian)Google Scholar
  36. 36.
    Kolesnikova AL, Romanov AE (1987) Edge dislocation perpendicular to the surface of a plate. Soviet Technical Physics Letters 3: 272–274Google Scholar
  37. 37.
    Kolesnikova AL, Romanov AE (2004a) Virtual circular dislocation-disclination loop technique in boundary value problems in the theory of defects. Journal of Applied Mechanics 71: 409–417CrossRefGoogle Scholar
  38. 38.
    Kolesnikova AL, Romanov AE (2004b) Misfit dislocation loops and critical parameters of quantum dots and wires. Philosophical Magazine Letters 84: 043510(1–4)CrossRefGoogle Scholar
  39. 39.
    Kolesnikova AL, Romanov AE, Chaldyshev VV (2007) Elastic-energy relaxation in heterostructures with strained nanoinclusions. Physics of the Solid State 49: 667–674CrossRefGoogle Scholar
  40. 40.
    Krotkus A, Coutaz JL (2005) Non-stoichiometric semiconductor materials for terahertz optoelectronics applications. Semiconductor Science and Technology 20: S142–S150CrossRefGoogle Scholar
  41. 41.
    Kurtenbach A, Eberl K, and Shitara T (1995) Nanoscale InP islands embedded in InGaP. Applied Physics Letters 66: 361–363CrossRefGoogle Scholar
  42. 42.
    Lavrent’eva LG, Vilisova MD, Preobrazhenskii VV, Chaldyshev VV (2002) Low-temperature molecular-beam epitaxy of GaAs: effect of excess arsenic on the structure and properties of the GaAs layers. Russian Physics Journal 45: 735–752CrossRefGoogle Scholar
  43. 43.
    Ledentsov NN, Bohrer J, Bimberg D, Kochnev IV, Maximov MV, Kop’ev PS, Alferov ZhI, Kosogov AO, Ruvimov SS, Werner P, Gosele U (1996) Formation of coherent superdots using metal-organic chemical vapor deposition. Applied Physics Letters 69: 1095–1097CrossRefGoogle Scholar
  44. 44.
    LeGoues F K, Tersoff J, Reuter MC, Hammar M, Tromp R (1995) Relaxation mechanism of Ge islands/Si(001) at low temperature. Applied Physics Letters 67: 2317–2319CrossRefGoogle Scholar
  45. 45.
    Liu X, Prasad A, Nishio J, Weber ER, Liliental-Weber Z, Walukiewicz W (1995) Native point defects in low-temperature-grown GaAs. Applied Physics Letters 67: 279–281CrossRefGoogle Scholar
  46. 46.
    Liu Y, Cao YG, Wu HS, Xie MH (2005) Coherent and dislocated three-dimensional islands of In_xGa1 - xN self-assembled on GaN(0001) during molecular-beam Epitaxy. Physical Review B 71: 153406 (1–4)Google Scholar
  47. 47.
    Luysberg M, Sohn H, Prasad A, Specht P, Liliental-Weber Z, Weber ER, Gebauer J, Krause-Rehberg R (1998) Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs. Jornal of Applied Physics 83: 561–566CrossRefGoogle Scholar
  48. 48.
    Martin GM (1981) Optical assessment of the main electron trap in bulk semi-insulating GaAs. Applied Physics Letters 39: 747–749CrossRefGoogle Scholar
  49. 49.
    Merdzhanova T, Kiravittaya S, Rastelli A, Stoffel M, Denker U, and Schmidt OG (2006) Dendrochronology of strain-relaxed islands. Physical Review Letters 96: 226103CrossRefGoogle Scholar
  50. 50.
    Mindlin RD, Cheng DH (1950) Thermoelastic stress in the semi-infinite solid. Journal of Applied Physics 21: 931–933CrossRefGoogle Scholar
  51. 51.
    Moreno M, Kaganer VM, Jenichen B, Trampert A, Daweritz L, Ploog KH (2005) Micromechanics of MnAs nanocrystals embedded in GaAs. Physical Review B 72: 115206Google Scholar
  52. 52.
    Moreno M, Trampert A, Daweritz L, Ploog KH (2004) MnAs nanoclusters embedded in GaAs: synthesis and properties. Applied Surface Science 234: 16–21CrossRefGoogle Scholar
  53. 53.
    Mura T (1987) Micromechanics of defects in solids. Martinus Nijhoff, DordrechtGoogle Scholar
  54. 54.
    Onaka S (2001) Averaged Eshelby tensor and elastic strain energy of a super spherical inclusion with uniform eigenstrains. Philosophical Magazine Letters 81: 265–272CrossRefGoogle Scholar
  55. 55.
    Onaka S, Sato H, Kato M (2002) Elastic states of doughnut-like inclusions with uniform eigenstrains treated by averaged Eshelby tensors. Philosophical Mahazine Letters 82: 1–7CrossRefGoogle Scholar
  56. 56.
    Romanov AE, Beltz GE, Fischer WT, Petroff PM, Speck JS (2001) Elastic fields of quantum dots in subsurface layers. Journal of Applied Physics 89: 4523–4531CrossRefGoogle Scholar
  57. 57.
    Romanov AE, Waltereit P, Speck JS (2005) Buried stressors in nitride semiconductors:influence in electronic properties. Journal of Applied Physics 97: 043708(1–13)Google Scholar
  58. 58.
    Shimogishi F, Mukai K, Fukushima S, Otsuka N (2002) Hopping conduction in GaAs layers grown by molecular-beam epitaxy at low temperatures. Physical Review B 65: 165311(1–5)Google Scholar
  59. 59.
    Schwartzman AF, Sinclair R (1991) Metastable and equilibrium defect structure of II-VI/GaAs interfaces. Journal of Electronic Materials 20: 805–814CrossRefGoogle Scholar
  60. 60.
    Shchukin VA, Bimberg D (1999) Spontaneous ordering of nanostructures on crystal surfaces. Reviews of Modern Physics 71: 1125–1171CrossRefGoogle Scholar
  61. 61.
    Shchukin VA, Ledentsov NN, Bimberg D (2002a) Epitaxy of Nanostructures. Springer, BerlinGoogle Scholar
  62. 62.
    Shchukin VA, Ledentsov NN, Bimberg D (2002b) Entropy effects in the self-organized formation of nanostructures. In: Kotrla M, Papanicolaou NI, Vvedensky DD (eds) Atomistic Aspects of Crystal Growth”, Kluwer, New-York, pp 397–409Google Scholar
  63. 63.
    Sears K, Wong-Leung J, Tan HH, Jagadish C (2006) A transmission electron microscopy study of defects formed through the capping layer of self-assembled InAs/GaAs quantum dot samples. Journal of Applied Physics 99: 113503 (1–8)Google Scholar
  64. 64.
    Seo K, Mura T (1979) The elastic field in a half space due to ellipsoidal inclusions with uniform dilatational eigenstrains. Journal of Applied Mechanics 46: 568–572Google Scholar
  65. 65.
    Stangl J, Holy V, Bauer G (2004) Structural properties of self-organized semiconductors nanostructures. Reviews of Modern Physics 76: 725–783CrossRefGoogle Scholar
  66. 66.
    Stewart K, Buda M, Wong-Leung J, Fu L, Jagadish C, Stiff-Roberts A, Bhattacharya P (2003) Influence of rapid thermal annealing on a 30 stack InAsÕGaAs quantum dot infrared photodetector. Journal of Applied Physics 94: 5283–5289CrossRefGoogle Scholar
  67. 67.
    Tanaka K, Mori T (1972) Note on volume integrals of the elastic field around an ellipsoidal inclusion. Journal of Elasticity 2: 199–200CrossRefGoogle Scholar
  68. 68.
    Teodosiu C (1982) Elastic models of crystal defects. Springer, BerlinGoogle Scholar
  69. 69.
    Tichert C (2002) Self-organisation of nanostructures in semiconductor heteroepitaxy. Physics Reports 365: 335–432CrossRefGoogle Scholar
  70. 70.
    Toropov AA, Lyublinskaya OG, Meltser BYa, Solov’ev VA, Sitnikova AA, Nestoklon MO, Rykhova OV, Ivanov SV, Thonke K, Sauer R (2004) Tensile-strained GaAs quantum wells and quantum dots in a GaAs_xSb1 - x matrix. Physical Review B 70: 205314(1-8)CrossRefGoogle Scholar
  71. 71.
    Tsuchida E, Arai Y, Nakazawa K, Jasiuk I. (2000) The elastic stress field in half-space containing a prolate spheroidal inhomogeneity to pure shear eigenstrain. Materials Science and Engineering A 285: 338–344Google Scholar
  72. 72.
    Vasyukov DA, Baidakova M.V, Chaldyshev VV, Suvorova AA, Preobrazhenskii VV, Putyato MA, Semyagin BR (2001) Structural transformations in low-temperature grown GaAs:Sb. Journal of Phys.ics D: Applied Physics 34: A15–A18CrossRefGoogle Scholar
  73. 73.
    Wang YQ, Wang ZL, Shen JJ, Brown A (2003) Effect of dissimilar anion annealing on structures of InAs/GaAs quantum dots. Journal of Crystal Growth 252: 58–67CrossRefGoogle Scholar
  74. 74.
    Wu LZ, Du SY (1995a) The elastic field caused by a circular cylindrical inclusion. 1. Inside the region x1 2+ x2 2<a2, -∞ < x3<∞ where the circular cylindrical inclusion is expressed by x1 2+x2 2 < a2, -h< x3<h. Journal of Applied Mechanics 62: 579–584Google Scholar
  75. 75.
    Wu LZ, Du SY (1995b). The elastic field caused by a circular cylindrical inclusion. 2. Inside the region x1 2+x2 2>a2, -∞<x3<∞ where the circular cylindrical inclusion is expressed by x1 2+ x2 2<a2, -h<x3< h. Journal of Applied Mechanics 62: 585–589Google Scholar
  76. 76.
    Wu LZ, Du SY (1999) The elastic field with a hemispherical inclusion. Proceedings of the Royal Society of London A 455: 879–891Google Scholar
  77. 77.
    Yoffe EH (1974) Calculation of elastic strain-spherical particle in a cubic material, Philosophical magazin 30: 923–933CrossRefGoogle Scholar
  78. 78.
    Yu HY, Sandy SC (1992) Center of dilatation and thermal stresses in an elastic plate. Proceedings of the Royal Society of London A 438: 103–112Google Scholar
  79. 79.
    Yu KM, Kaminska M, Liliental-Weber Z (1992) Characterization of GaAs layers grown by low temperature molecular beam epitaxy using ion beam techniques. Journal of Applied Physics 72: 2850–2856CrossRefGoogle Scholar
  80. 80.
    Zakharov ND, Werner P, Gösele U, Ledentsov NN, Bimberg D, Cherkashin NA, Bert NA, Volovik BV, Ustinov VM, Maleev NA, Zhukov AE, Tsatsul’nikov AF (2001) Reduction of defect density in structures with InAs-GaAs quantum dots grown at low temperature for 1.55 μ m range. Material Research Society Symposium Proceedings 672: O8.5.1–O8.5.6Google Scholar
  81. 81.
    Zou J, Liao XZ, Cockayne DJH, Jiang ZM (2002) Alternative mechanism for misfit dislocation generation during high temperature Ge(Si)/Si (001) island growth. Applied Physics Letters 81: 1996–1998CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • N.A. Bert
  • V.V. Chaldyshev
  • A.L. Kolesnikova
  • A.E. Romanov

There are no affiliations available

Personalised recommendations