ANDROMEDA: A MATLAB Automated cDNA Microarray Data Analysis Platform

  • Aristotelis Chatziioannou
  • Panagiotis Moulos
Part of the IFIP The International Federation for Information Processing book series (IFIPAICT, volume 247)


DNA microarrays constitute a relatively new biological technology which allows gene expression profiling at a global level by measuring mRNA abundance. However, the grand complexity characterizing a microarray experiment entails the development of computationally powerful tools apt for probing the biological problem studied. ANDROMEDA (Automated aND RObust Microarray Experiment Data Analysis) is a MATLAB implemented program which performs all steps of typical microarray data analysis including noise filtering processes, background correction, data normalization, statistical selection of differentially expressed genes based on parametric or non parametric statistics and hierarchical cluster analysis resulting in detailed lists of differentially expressed genes and formed clusters through a strictly defined automated workflow. Along with the completely automated procedure, ANDROMEDA offers a variety of visualization options (MA plots, boxplots, clustering images etc). Emphasis is given to the output data format which contains a substantial amount of useful information and can be easily imported in a spreadsheet supporting software or incorporated in a relational database for further processing and data mining.


Differentially Express Gene Background Correction Microarray Data Analysis Phosphoglycerate Mutase Array Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Babu, in: Computational Genomics: Theory and Applications, edited by R. Grant (Horizon Press, 2004).Google Scholar
  2. 2.
    B.A. Rosenzweig, P.S. Pine, O.E. Domon, S.M. Morris, J.J. Chen and F.D. Sistare, Dye Bias Correction in Dual-Labeled cDNA Microarray Gene Expression Measurements, Environ Health Perspect 112(4), 480–487 (2004).Google Scholar
  3. 3.
    A.L. Tarca, R. Romero and S. Draghici, Analysis of Microarray Experiments of Gene Expression Profiling, Am J Obstet Gynecol 195(2), 373–388 (2006).CrossRefGoogle Scholar
  4. 4.
    J. Quackenbush, Microarray Data Normalization and Transformation, Nat Genet 32, 496–501 (2002).CrossRefGoogle Scholar
  5. 5.
    M. Bilban, L.K. Buehler, S. Head, G. Desoye and V. Quaranta, Normalizing DNA Microarray Data, Curr Issues Mol Biol 4(2), 57–64 (2002).Google Scholar
  6. 6.
    G.C. Tseng, M.K. Oh, L. Rohlin, J.C. Liao and W.H. Wong, Issues in cDNA Microarray Analysis: Quality Filtering, Channel Normalization, Models of Variations and Assessment of Gene Effects, Nucleic Acids Res 29(12), 2549–2557 (2001).CrossRefGoogle Scholar
  7. 7.
    W.S. Cleveland, E. Grosse and W.M. Shyu, in: Statistical Models in S, edited by J.M. Chambers and T.J. Hastie (Wadsworth & Brooks/Cole Dormand, J.R., 1992).Google Scholar
  8. 8.
    X. Cui, M.K. Kerr and G.A. Churchill, Transformations for cDNA Microarray Data, Stat Appl Genet Mol Biol 2, Article4 (2003).Google Scholar
  9. 9.
    B.P. Durbin, J.S. Hardin, D.M. Hawkins and D.M. Rocke, A Variance-Stabilizing Transformation for Gene-Expression Microarray Data, Bioinformatics 18, S105–S110 (2002).Google Scholar
  10. 10.
    D.B. Finkelstein, R. Ewing, J. Gollub, F. Sterky, S. Somerville and J.M. Cherry, in: Methods of Microarray Data Analysis, edited by L. S.M. and K.F. Johnson (Kluwer Academic, Cambridge, MA, 2002) 57–68.Google Scholar
  11. 11.
    P. Hegde, R. Qi, K. Abernathy, C. Gay, S. Dharap, R. Gaspard, J.E. Hughes, E. Snesrud, N. Lee and J. Quackenbush, A Concise Guide to cDNA Microarray Analysis, Biotechniques 29(3), 548–550, 552–544, 556 passim (2000).Google Scholar
  12. 12.
    J. Quackenbush, Computational Analysis of Microarray Data, Nat Rev Genet 2(6), 418–427 (2001).CrossRefGoogle Scholar
  13. 13.
    Y.H. Yang, S. Dudoit, P. Luu, D.M. Lin, V. Peng, J. Ngai and T.P. Speed, Normalization for cDNA Microarray Data: A Robust Composite Method Addressing Single and Multiple Slide Systematic Variation, Nucleic Acids Res 30(4), e15 (2002).CrossRefGoogle Scholar
  14. 14.
    R.C. Gentleman, V.J. Carey, D.M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A.J. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J.Y. Yang and J. Zhang, Bioconductor: Open Software Development for Computational Biology and Bioinformatics, Genome Biol 5(10), R80 (2004).CrossRefGoogle Scholar
  15. 15.
    A. Buness, W. Huber, K. Steiner, H. Sultmann and A. Poustka, Arraymagic: Two-Colour cDNA Microarray Quality Control and Preprocessing, Bioinformatics 21(4), 554–556 (2005).CrossRefGoogle Scholar
  16. 16.
    J. Dietzsch, N. Gehlenborg and K. Nieselt, Mayday—a Microarray Data Analysis Workbench, Bioinformatics 22(8), 1010–1012 (2006).CrossRefGoogle Scholar
  17. 17.
    N. Knowlton, I.M. Dozmorov and M. Centola, Microarray Data Analysis Toolbox (Mdat): For Normalization, Adjustment and Analysis of Gene Expression Data, Bioinformatics 20(18), 3687–3690 (2004).CrossRefGoogle Scholar
  18. 18.
    R. Pieler, F. Sanchez-Cabo, H. Hackl, G.G. Thallinger and Z. Trajanoski, Arraynorm: Comprehensive Normalization and Analysis of Microarray Data, Bioinformatics 20(12), 1971–1973 (2004).CrossRefGoogle Scholar
  19. 19.
    D. Venet, Matarray: A Matlab Toolbox for Microarray Data, Bioinformatics 19(5), 659–660 (2003).CrossRefGoogle Scholar
  20. 20.
    A.I. Saeed, N.K. Bhagabati, J.C. Braisted, W. Liang, V. Sharov, E.A. Howe, J. Li, M. Thiagarajan, J.A. White and J. Quackenbush, TM4 Microarray Software Suite, Methods Enzymol 411 (134–193 (2006).Google Scholar
  21. 21.
    S. Patel and J. Lyons-Weiler, Cageda: A Web Application for the Integrated Analysis of Global Gene Expression Patterns in Cancer, Appl Bioinformatics 3(1), 49–62 (2004).CrossRefGoogle Scholar
  22. 22.
    A. Chatziioannou, P. Moulos, V. Aidinis and F. Kolisis, Andromeda: A Pipeline for Versatile 2-Colour cDNA Microarray Data Analysis Implemented in Matlab, (submitted to Bioinformatics, 2007).Google Scholar
  23. 23.
    S. de Jong and F. van der Meer Imaging Spectrometry: Basic Principles and Prospective Applications (Kluwer Academic, 2002)Google Scholar
  24. 24.
    J. W. Tukey Exploratory Data Analysis (Addison-Wesley, Reading, MA, 1977)MATHGoogle Scholar
  25. 25.
    M.K. Kerr, M. Martin and G.A. Churchill, Analysis of Variance for Gene Expression Microarray Data, J Comput Biol 7(6), 819–837 (2000).CrossRefGoogle Scholar
  26. 26.
    W.J. Conover Practical Nonparametric Statistics (Wiley, 1980).Google Scholar
  27. 27.
    Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J R Statist Soc 57, 289–300 (1995).MATHMathSciNetGoogle Scholar

Copyright information

© International Federation for Information Processing 2007

Authors and Affiliations

  • Aristotelis Chatziioannou
    • 1
  • Panagiotis Moulos
    • 1
  1. 1.National Hellenic Research Foundation, Institute of Biological Research and BiotechnologyMetabolic Engineering and Bioinformatics GroupAthensGreece

Personalised recommendations