Designing the Carbon Nanotube Field Effect Transistor Through Contact Barrier Engineering

  • Byoung-Kye Kim
  • Hyo-Suk Kim
  • Hye-Mi So
  • Noejung Park
  • Suklyun Hong
  • Ju-Jin Kim
  • Jeong O. Lee
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 3)


Through recent publications, as reviewed in this article, we have determined the effects of contact barrier change on the electrical transport properties of carbon nanotube field-effect transistors. To analyze the Fermi level alignment and the Schottky barrier at the contact, we used the first-principles electronic structure calculations of different types of metal electrodes with various bonding configurations. In parallel, we have used various experimental techniques to engineer the contact barrier: decorations of metal nanoparticles, the self-assembled monolayers of molecules, and protein nanoparticles. We investigated the changes in the electron transport properties of the nanotube transistors in relation to the adjustment of the contact barrier. Overall reviews of these studies are presented here, and a few potential applications are also suggested.


Work Function Schottky Barrier Schottky Barrier Height Apply Physic Letter Conduction Band Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonov RD, Johnson AT (1999) Subband population in a single-wall carbon nanotube diode. Phys Rev Lett 83:3274–3276CrossRefADSGoogle Scholar
  2. 2.
    Appenzeller J, Knoch J, Derycke V, Martel R, Wind S, Avouris Ph (2002) Field-modulated carrier transport in carbon nanotube transistors. Phys Rev Lett 89:126801–126804PubMedCrossRefADSGoogle Scholar
  3. 3.
    Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320PubMedCrossRefADSGoogle Scholar
  4. 4.
    (a)Besteman K, Lee J, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensor. Nano lett 3:727–730; (b) Star A, Gabriel J-CP, Bradley K, Grüner G (2003) Electronic detection of specific protein binding using nanotube fet devices. Nano Lett 3:459–463Google Scholar
  5. 5.
    Bockrath M, Cobden DH, Lu J, Rinzler AG, Smalley RE, Balents L, McEuen PL (1999) Luttinger-liquid behaviour in carbon nanotubes. Nature 397:598–601CrossRefADSGoogle Scholar
  6. 6.
    Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE (1997) Single-electron transport in ropes of carbon nanotubes. Science 275:1922–1925PubMedCrossRefGoogle Scholar
  7. 7.
    Campbell IH, Rubin S, Zawodzinski TA, Kress JD, Martin RL, Smith DL, Barashkov NN, Ferraris JP (1996) Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys Rev B 54:R14321–R14324CrossRefADSGoogle Scholar
  8. 8.
    Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang X, Wang Q, Chang YL, Dai H (2004) An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J Am Chem Soc 126:1563–1568PubMedCrossRefGoogle Scholar
  9. 9.
    Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804PubMedCrossRefADSGoogle Scholar
  10. 10.
    de Boer B, Hadipour A, Mandoc MM, van Woudenbergh T, Blom PWM (2005) Tuning of metal work functions with self-assembled monolayers. Adv Mater 17:621–625CrossRefGoogle Scholar
  11. 11.
    Delaney P, Ventra MD (1999) Comment on “Contact resistance of carbon nanotubes”. Appl Phys Lett 75:4028–4029CrossRefADSGoogle Scholar
  12. 12.
    Derycke V, Martel R, Appenzeller J, Avouris Ph (2002) Controlling doping and carrier injection in carbon nanotube transistors. Appl Phys Lett 80:2773–2775CrossRefADSGoogle Scholar
  13. 13.
    Fall CJ, Binggeli N, Baldereschi A (1998) Anomaly in the anisotropy of the aluminum work function. Phys Rev B 58:R7544–R7547CrossRefADSGoogle Scholar
  14. 14.
    Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746PubMedCrossRefADSGoogle Scholar
  15. 15.
    Freitag M, Radosavljevic M, Zhou Y, Johnson AT (2001) Controlled creation of a carbon nanotube diode by a scanned gate. Appl Phys Lett 79:3326–3328CrossRefADSGoogle Scholar
  16. 16.
    Heinze S, Tersoff J, Avouris Ph (2003) Electrostatic engineering of nanotube transistors for improved performance. Appl Phys Lett 83:5038–5040CrossRefADSGoogle Scholar
  17. 17.
    Hertel T, Avouris Ph, Martel R, Shea HR, Schmidt T, Walkup RE (1998) Carbon nanotubes: Nanomechanics, manipulation, and electronic devices. Appl Surf Sci 141:201–209Google Scholar
  18. 18.
    Honkala K, Laasonen K (2000) Oxygen molecule dissociation on the Al(111) Surface. Phys Rev Lett 84:705–708PubMedCrossRefADSGoogle Scholar
  19. 19.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefADSGoogle Scholar
  20. 20.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRefADSGoogle Scholar
  21. 21.
    Jacobsen J, Hammer B, Jacobsen KW, Norskøv JK (1995) Electronic structure, total energies, and STM images of clean and oxygen-covered Al(111). Phys Rev B 52:14954–14962CrossRefADSGoogle Scholar
  22. 22.
    Javey A, Guo J, Wang O, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657PubMedCrossRefADSGoogle Scholar
  23. 23.
    Javey A, Tu R, Farmer DB, Guo J, Gordon RG, Dai H (2005) High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett 5:345–348PubMedCrossRefADSGoogle Scholar
  24. 24.
    Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673PubMedCrossRefADSGoogle Scholar
  25. 25.
    Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386CrossRefGoogle Scholar
  26. 26.
    Kong J, Dai H (2001) Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds. J Phys Chem B 105:2890–2893CrossRefGoogle Scholar
  27. 27a.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625PubMedCrossRefADSGoogle Scholar
  28. 27b.
    Someya T, Small J, Kim P, Nuckolls C, Yardley JT (2003) Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett 3:877–381CrossRefADSGoogle Scholar
  29. 27c.
    Someya T, Small J, Kim P, Nuckolls C, Yardley JT (2003) Nerve agent detection using networks of single-walled carbon nanotubes. Appl Phys Lett 83:4026–4028CrossRefGoogle Scholar
  30. 28.
    Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395:878–881CrossRefADSGoogle Scholar
  31. 29.
    Kong J, Yenilmez E, Tombler TW, Kim W, Dai H, Laughlin RB, Liu L, Jayanthi CS, Wu SY (2001) Quantum interference and ballistic transmission in nanotube electron waveguides. Phys Rev Lett 87:106801–106804PubMedCrossRefADSGoogle Scholar
  32. 30.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  33. 31.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRefADSGoogle Scholar
  34. 32.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefADSGoogle Scholar
  35. 33.
    Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87:073101–073103CrossRefADSGoogle Scholar
  36. 34.
    Liang W, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park HK (2001) Fabry–Perot interference in a nanotube electron waveguide. Nature 411:665–669PubMedCrossRefADSGoogle Scholar
  37. 35.
    Lin YM, Appenzeller J, Avouris Ph (2004) Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett 4:947–950CrossRefADSGoogle Scholar
  38. 36.
    Martel R, Derycke V, Lavoie C, Appenzeller J, Chan KK, Tersoff J, Avouris Ph (2001) Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys Rev Lett 87:256805–256808PubMedCrossRefADSGoogle Scholar
  39. 37.
    Martel R, Schmidt T, Shea HR, Hertel T, Avouris Ph (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449CrossRefADSGoogle Scholar
  40. 38.
    Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48:4729–4733CrossRefADSGoogle Scholar
  41. 39.
    Moon S, Lee S-G, Song W, Lee JS, Nam K, Kim J, Park N (2007) Appl Phys Lett:90:092113CrossRefADSGoogle Scholar
  42. 40.
    Nosho Y, Ohno Y, Kishimoto S, Mizutani T (2005) n-Type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes. Appl Phys Lett 86:073105–073107CrossRefADSGoogle Scholar
  43. 41a.
    Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64CrossRefADSGoogle Scholar
  44. 41b.
    Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394:52–55PubMedCrossRefADSGoogle Scholar
  45. 42.
    Oh H, Kim JJ, Song W, Moon S, Kim N, Kim J, Park N (2006) Fabrication of n-type carbon nanotube field-effect transistors by Al doping. Appl Phys Lett 88:103503–103505CrossRefADSGoogle Scholar
  46. 43.
    Park N, Hong S (2005) Electronic structure calculations of metal–nanotube contacts with or without oxygen adsorption. Phys Rev B 72:045408–045412CrossRefADSMathSciNetGoogle Scholar
  47. 44.
    Park N, Kang D, Hong S, Han S (2005) Pressure-dependent Schottky barrier at the metal–nanotube contact. Appl Phys Lett 87:013112–013114CrossRefADSGoogle Scholar
  48. 45.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868PubMedCrossRefADSGoogle Scholar
  49. 46.
    Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97PubMedCrossRefADSGoogle Scholar
  50. 47.
    Saito R, Dresselhaus G, Dresselhaus MS (1993) Electronic structure of double-layer graphene tubules. J Appl Phys 73:494–500CrossRefADSGoogle Scholar
  51. 48.
    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of graphene tubules based on C60. Phys Rev B 46:1804–1811CrossRefADSGoogle Scholar
  52. 49.
    Sasaki T, Ohno T (1999) Calculations of the potential-energy surface for dissociation process of O2 on the Al(111) surface. Phys Rev B 60:7824–7827CrossRefADSGoogle Scholar
  53. 50.
    Star A, Han T-R, Joshi V, Gabriel J-C P, Grüner G (2004) Nanoelectronic carbon dioxide sensors. Adv Mater 16:2049–2052CrossRefGoogle Scholar
  54. 51.
    Star A, Han T-R, Joshi V, Stetter JR (2004) Electroanalysis 16:108–112CrossRefGoogle Scholar
  55. 52.
    Sumanasekera GU, Adu CKW, Fang S, Eklund PC (2000) Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys Rev Lett 85:1096–1099PubMedCrossRefADSGoogle Scholar
  56. 53.
    Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477CrossRefADSGoogle Scholar
  57. 54a.
    Tans SJ, Devoret MH, Groeneveld RJA, Dekker C (1998) Electron-electron correlations in carbon nanotubes. Nature 394:761–764CrossRefADSGoogle Scholar
  58. 54b.
    Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62CrossRefADSGoogle Scholar
  59. 55.
    Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52CrossRefADSGoogle Scholar
  60. 56.
    Tersoff J (1999) Contact resistance of carbon nanotubes. Appl Phys Lett 74:2122–2124CrossRefADSGoogle Scholar
  61. 57.
    Ulman A (1991) An introduction to ultrathin organic films; from Langmuir-Blodgett to self assembly. Academic Press, San Diego, CAGoogle Scholar
  62. 58.
    van Oss CJ, Giese RF, Bronson PM, Docoslis A, Edwards P, Ruyechan WT (2003) Macroscopic-scale surface properties of streptavidin and their influence on a specific interactions between streptavidin and dissolved biopolymers. Colloids Surf B 30:25–36CrossRefGoogle Scholar
  63. 59.
    Xue Y, Datta S (1999) Fermi-level alignment at metal–carbon nanotube interfaces: Application to scanning tunneling spectroscopy. Phys Rev Lett 83:4844–4847CrossRefADSGoogle Scholar
  64. 60.
    Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941–2944PubMedCrossRefADSGoogle Scholar
  65. 61.
    Zhang Y, Dai H (2000) Formation of metal nanowires on suspended single-walled carbon nanotubes. Phys Lett 77:3015–3017Google Scholar
  66. 62.
    Zhang Y, Franklin NW, Chen RJ, Dai H (2000) Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction. Chem Phys Lett 331:35–41CrossRefADSGoogle Scholar
  67. 63.
    Zhao Q, Buongiorno Nardelli M, Lu W, Bernholc J (2005) Carbon nanotube-metal cluster composites: A new road to chemical sensors? Nano Lett 5:847–851PubMedCrossRefADSGoogle Scholar
  68. 64.
    Zhou C, Kong J, Yenilmez F, Dai H (2000) Modulated chemical doping of individual carbon nanotubes. Science 290:1552–1555PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Byoung-Kye Kim
    • 1
  • Hyo-Suk Kim
    • 1
  • Hye-Mi So
    • 2
  • Noejung Park
    • 3
  • Suklyun Hong
    • 4
  • Ju-Jin Kim
    • 1
  • Jeong O. Lee
    • 2
  1. 1.Department of PhysicsChonbuk National UniversityJeonjuKorea
  2. 2.Fusion-Biotechnology Research Center, Advanced Materials DivisionKorea Research Institute of Chemical TechnologyDaejeonKorea
  3. 3.Department of Applied PhysicsDankook UniversityYonginKorea
  4. 4.Department of Physics and Institute of Fundamental PhysicsSejong UniversitySeoulKorea

Personalised recommendations