Skip to main content

Designing the Carbon Nanotube Field Effect Transistor Through Contact Barrier Engineering

  • Chapter
One-Dimensional Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 3))

  • 1914 Accesses

Abstract

Through recent publications, as reviewed in this article, we have determined the effects of contact barrier change on the electrical transport properties of carbon nanotube field-effect transistors. To analyze the Fermi level alignment and the Schottky barrier at the contact, we used the first-principles electronic structure calculations of different types of metal electrodes with various bonding configurations. In parallel, we have used various experimental techniques to engineer the contact barrier: decorations of metal nanoparticles, the self-assembled monolayers of molecules, and protein nanoparticles. We investigated the changes in the electron transport properties of the nanotube transistors in relation to the adjustment of the contact barrier. Overall reviews of these studies are presented here, and a few potential applications are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonov RD, Johnson AT (1999) Subband population in a single-wall carbon nanotube diode. Phys Rev Lett 83:3274–3276

    Article  ADS  CAS  Google Scholar 

  2. Appenzeller J, Knoch J, Derycke V, Martel R, Wind S, Avouris Ph (2002) Field-modulated carrier transport in carbon nanotube transistors. Phys Rev Lett 89:126801–126804

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320

    Article  PubMed  ADS  CAS  Google Scholar 

  4. (a)Besteman K, Lee J, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensor. Nano lett 3:727–730; (b) Star A, Gabriel J-CP, Bradley K, Grüner G (2003) Electronic detection of specific protein binding using nanotube fet devices. Nano Lett 3:459–463

    Google Scholar 

  5. Bockrath M, Cobden DH, Lu J, Rinzler AG, Smalley RE, Balents L, McEuen PL (1999) Luttinger-liquid behaviour in carbon nanotubes. Nature 397:598–601

    Article  ADS  CAS  Google Scholar 

  6. Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE (1997) Single-electron transport in ropes of carbon nanotubes. Science 275:1922–1925

    Article  PubMed  CAS  Google Scholar 

  7. Campbell IH, Rubin S, Zawodzinski TA, Kress JD, Martin RL, Smith DL, Barashkov NN, Ferraris JP (1996) Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys Rev B 54:R14321–R14324

    Article  ADS  CAS  Google Scholar 

  8. Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang X, Wang Q, Chang YL, Dai H (2004) An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J Am Chem Soc 126:1563–1568

    Article  PubMed  CAS  Google Scholar 

  9. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804

    Article  PubMed  ADS  CAS  Google Scholar 

  10. de Boer B, Hadipour A, Mandoc MM, van Woudenbergh T, Blom PWM (2005) Tuning of metal work functions with self-assembled monolayers. Adv Mater 17:621–625

    Article  CAS  Google Scholar 

  11. Delaney P, Ventra MD (1999) Comment on “Contact resistance of carbon nanotubes”. Appl Phys Lett 75:4028–4029

    Article  ADS  CAS  Google Scholar 

  12. Derycke V, Martel R, Appenzeller J, Avouris Ph (2002) Controlling doping and carrier injection in carbon nanotube transistors. Appl Phys Lett 80:2773–2775

    Article  ADS  CAS  Google Scholar 

  13. Fall CJ, Binggeli N, Baldereschi A (1998) Anomaly in the anisotropy of the aluminum work function. Phys Rev B 58:R7544–R7547

    Article  ADS  CAS  Google Scholar 

  14. Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Freitag M, Radosavljevic M, Zhou Y, Johnson AT (2001) Controlled creation of a carbon nanotube diode by a scanned gate. Appl Phys Lett 79:3326–3328

    Article  ADS  CAS  Google Scholar 

  16. Heinze S, Tersoff J, Avouris Ph (2003) Electrostatic engineering of nanotube transistors for improved performance. Appl Phys Lett 83:5038–5040

    Article  ADS  CAS  Google Scholar 

  17. Hertel T, Avouris Ph, Martel R, Shea HR, Schmidt T, Walkup RE (1998) Carbon nanotubes: Nanomechanics, manipulation, and electronic devices. Appl Surf Sci 141:201–209

    Google Scholar 

  18. Honkala K, Laasonen K (2000) Oxygen molecule dissociation on the Al(111) Surface. Phys Rev Lett 84:705–708

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  ADS  CAS  Google Scholar 

  20. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  ADS  CAS  Google Scholar 

  21. Jacobsen J, Hammer B, Jacobsen KW, Norskøv JK (1995) Electronic structure, total energies, and STM images of clean and oxygen-covered Al(111). Phys Rev B 52:14954–14962

    Article  ADS  CAS  Google Scholar 

  22. Javey A, Guo J, Wang O, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  PubMed  ADS  CAS  Google Scholar 

  23. Javey A, Tu R, Farmer DB, Guo J, Gordon RG, Dai H (2005) High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett 5:345–348

    Article  PubMed  ADS  CAS  Google Scholar 

  24. Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673

    Article  PubMed  ADS  CAS  Google Scholar 

  25. Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386

    Article  CAS  Google Scholar 

  26. Kong J, Dai H (2001) Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds. J Phys Chem B 105:2890–2893

    Article  CAS  Google Scholar 

  27. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  PubMed  ADS  CAS  Google Scholar 

  28. Someya T, Small J, Kim P, Nuckolls C, Yardley JT (2003) Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett 3:877–381

    Article  ADS  CAS  Google Scholar 

  29. Someya T, Small J, Kim P, Nuckolls C, Yardley JT (2003) Nerve agent detection using networks of single-walled carbon nanotubes. Appl Phys Lett 83:4026–4028

    Article  CAS  Google Scholar 

  30. Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395:878–881

    Article  ADS  CAS  Google Scholar 

  31. Kong J, Yenilmez E, Tombler TW, Kim W, Dai H, Laughlin RB, Liu L, Jayanthi CS, Wu SY (2001) Quantum interference and ballistic transmission in nanotube electron waveguides. Phys Rev Lett 87:106801–106804

    Article  PubMed  ADS  CAS  Google Scholar 

  32. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  33. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  ADS  CAS  Google Scholar 

  34. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  ADS  CAS  Google Scholar 

  35. Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87:073101–073103

    Article  ADS  CAS  Google Scholar 

  36. Liang W, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park HK (2001) Fabry–Perot interference in a nanotube electron waveguide. Nature 411:665–669

    Article  PubMed  ADS  CAS  Google Scholar 

  37. Lin YM, Appenzeller J, Avouris Ph (2004) Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett 4:947–950

    Article  ADS  CAS  Google Scholar 

  38. Martel R, Derycke V, Lavoie C, Appenzeller J, Chan KK, Tersoff J, Avouris Ph (2001) Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys Rev Lett 87:256805–256808

    Article  PubMed  ADS  CAS  Google Scholar 

  39. Martel R, Schmidt T, Shea HR, Hertel T, Avouris Ph (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449

    Article  ADS  CAS  Google Scholar 

  40. Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48:4729–4733

    Article  ADS  CAS  Google Scholar 

  41. Moon S, Lee S-G, Song W, Lee JS, Nam K, Kim J, Park N (2007) Appl Phys Lett:90:092113

    Article  ADS  CAS  Google Scholar 

  42. Nosho Y, Ohno Y, Kishimoto S, Mizutani T (2005) n-Type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes. Appl Phys Lett 86:073105–073107

    Article  ADS  CAS  Google Scholar 

  43. Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64

    Article  ADS  CAS  Google Scholar 

  44. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394:52–55

    Article  PubMed  ADS  CAS  Google Scholar 

  45. Oh H, Kim JJ, Song W, Moon S, Kim N, Kim J, Park N (2006) Fabrication of n-type carbon nanotube field-effect transistors by Al doping. Appl Phys Lett 88:103503–103505

    Article  ADS  CAS  Google Scholar 

  46. Park N, Hong S (2005) Electronic structure calculations of metal–nanotube contacts with or without oxygen adsorption. Phys Rev B 72:045408–045412

    Article  ADS  MathSciNet  CAS  Google Scholar 

  47. Park N, Kang D, Hong S, Han S (2005) Pressure-dependent Schottky barrier at the metal–nanotube contact. Appl Phys Lett 87:013112–013114

    Article  ADS  CAS  Google Scholar 

  48. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  PubMed  ADS  CAS  Google Scholar 

  49. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97

    Article  PubMed  ADS  CAS  Google Scholar 

  50. Saito R, Dresselhaus G, Dresselhaus MS (1993) Electronic structure of double-layer graphene tubules. J Appl Phys 73:494–500

    Article  ADS  CAS  Google Scholar 

  51. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of graphene tubules based on C60. Phys Rev B 46:1804–1811

    Article  ADS  CAS  Google Scholar 

  52. Sasaki T, Ohno T (1999) Calculations of the potential-energy surface for dissociation process of O2 on the Al(111) surface. Phys Rev B 60:7824–7827

    Article  ADS  CAS  Google Scholar 

  53. Star A, Han T-R, Joshi V, Gabriel J-C P, Grüner G (2004) Nanoelectronic carbon dioxide sensors. Adv Mater 16:2049–2052

    Article  CAS  Google Scholar 

  54. Star A, Han T-R, Joshi V, Stetter JR (2004) Electroanalysis 16:108–112

    Article  CAS  Google Scholar 

  55. Sumanasekera GU, Adu CKW, Fang S, Eklund PC (2000) Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys Rev Lett 85:1096–1099

    Article  PubMed  ADS  CAS  Google Scholar 

  56. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477

    Article  ADS  CAS  Google Scholar 

  57. Tans SJ, Devoret MH, Groeneveld RJA, Dekker C (1998) Electron-electron correlations in carbon nanotubes. Nature 394:761–764

    Article  ADS  CAS  Google Scholar 

  58. Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62

    Article  ADS  Google Scholar 

  59. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  ADS  CAS  Google Scholar 

  60. Tersoff J (1999) Contact resistance of carbon nanotubes. Appl Phys Lett 74:2122–2124

    Article  ADS  CAS  Google Scholar 

  61. Ulman A (1991) An introduction to ultrathin organic films; from Langmuir-Blodgett to self assembly. Academic Press, San Diego, CA

    Google Scholar 

  62. van Oss CJ, Giese RF, Bronson PM, Docoslis A, Edwards P, Ruyechan WT (2003) Macroscopic-scale surface properties of streptavidin and their influence on a specific interactions between streptavidin and dissolved biopolymers. Colloids Surf B 30:25–36

    Article  CAS  Google Scholar 

  63. Xue Y, Datta S (1999) Fermi-level alignment at metal–carbon nanotube interfaces: Application to scanning tunneling spectroscopy. Phys Rev Lett 83:4844–4847

    Article  ADS  CAS  Google Scholar 

  64. Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941–2944

    Article  PubMed  ADS  CAS  Google Scholar 

  65. Zhang Y, Dai H (2000) Formation of metal nanowires on suspended single-walled carbon nanotubes. Phys Lett 77:3015–3017

    CAS  Google Scholar 

  66. Zhang Y, Franklin NW, Chen RJ, Dai H (2000) Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction. Chem Phys Lett 331:35–41

    Article  ADS  CAS  Google Scholar 

  67. Zhao Q, Buongiorno Nardelli M, Lu W, Bernholc J (2005) Carbon nanotube-metal cluster composites: A new road to chemical sensors? Nano Lett 5:847–851

    Article  PubMed  ADS  CAS  Google Scholar 

  68. Zhou C, Kong J, Yenilmez F, Dai H (2000) Modulated chemical doping of individual carbon nanotubes. Science 290:1552–1555

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, BK. et al. (2008). Designing the Carbon Nanotube Field Effect Transistor Through Contact Barrier Engineering. In: Wang, Z.M. (eds) One-Dimensional Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74132-1_9

Download citation

Publish with us

Policies and ethics