Advertisement

Electromagnetic Nanowire Resonances for Field-Enhanced Spectroscopy

  • Annemarie Pucci
  • Frank Neubrech
  • Javier Aizpurua
  • Thomas Cornelius
  • Marc Lamy de la Chapelle
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 3)

Abstract

Electromagnetic resonances of metal nanowires lead to strong enhancement of the near field of the particle. Antenna-like resonances that give the biggest enhancement are explained theoretically. The preparation of high-quality wires is introduced. Spectroscopic results for resonance curves are shown and discussed with respect to field enhancement. Surface-enhanced Raman scattering and surfaceenhanced infrared absorption are introduced focusing on nanowire-assisted configurations, and examples of these enhanced spectroscopies for molecules on resonant nanowires are shown.

Keywords

Surface Enhance Raman Scattering Plasmon Resonance Boundary Element Method Localize Surface Plasmon Resonance Gold Nanorods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Félidj N, Aubard J, Lévi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys Rev B 65:075419ADSCrossRefGoogle Scholar
  2. 2.
    Grand J, Lamy de la Chapelle M, Bijeon JL, Adam PM, Vial A, and Royer P (2005) Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays. Phys Rev B 72:033407ADSCrossRefGoogle Scholar
  3. 3.
    Link S, El-Sayed MA (1999a) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nano-dots and nano-rods. J Phys Chem B 103:8410CrossRefGoogle Scholar
  4. 4.
    Schider G, Krenn JR, Hohenau A, Ditlbacher H, Leitner A, Aussenegg FR, Schaich WL, Puscasu I, Monacelli B, and Boreman G (2003) Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B 68:155427ADSCrossRefGoogle Scholar
  5. 5.
    Anger P, Bharadwaj P, Novotny L (2007) Spectral dependence of single molecule fluorescence enhancement. Nanotechnology 18:044017ADSCrossRefGoogle Scholar
  6. 6.
    Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys Rev Lett 95:017402PubMedADSCrossRefGoogle Scholar
  7. 7.
    Frey HG,Witt S, Felderer K, Guckenberger R (2004) High resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Phys Rev Lett 93:200801PubMedADSCrossRefGoogle Scholar
  8. 8.
    Mertens H, Biteen JS, Atwater HA, Polman A (2006) Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. Nano Lett 6:2622PubMedADSCrossRefGoogle Scholar
  9. 9.
    Girard G (2005) Near fields in nanostructures. Rep Prog Phys 68:1883ADSCrossRefGoogle Scholar
  10. 10.
    Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys, Lpz 25, 377ADSCrossRefGoogle Scholar
  11. 11.
    Aizpurua J, Bryant GW, Richter LJ, García de Abajo FJ, Kelley BK, Mallouk T (2005) Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys Rev B 71:235420ADSCrossRefGoogle Scholar
  12. 12.
    Cubukcu E, Kort EA, Crozier KB, Capasso F (2006) Plasmonic laser antenna. Appl Phys Lett 89:093120ADSCrossRefGoogle Scholar
  13. 13.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667ADSCrossRefGoogle Scholar
  14. 14.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508PubMedADSCrossRefGoogle Scholar
  15. 15.
    Fan S, Joannopoulos JD (2002) Analysis of guided resonances in photonic crystal slabs. Phys Rev B 65:235112ADSCrossRefGoogle Scholar
  16. 16.
    Steinhögl W, Schindler G, Steinlesberger G, and Engelhardt M (2002) Size-dependent resistivity of metallic wires in the mesoscopic range. Phys Rev B 66:075414ADSCrossRefGoogle Scholar
  17. 17.
    Berthier S, Peiro J (1997) Infrared absorption of nanocermets close to the percolation threshold. J Phys III (France) 7:537CrossRefGoogle Scholar
  18. 18.
    Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci USA 101:17930PubMedADSCrossRefGoogle Scholar
  19. 19.
    Shubin VA, Sarychev AK, Clerc JP, and Shalaev VM (2000) Local electric and magnetic fields in semicontinuous metal films: Beyond the quasistatic approximation. Phys Rev B 62:11230ADSCrossRefGoogle Scholar
  20. 20.
    Xu H, Aizpurua J, Apell SP, Käll M (2000) Electromagnetic contributions to single-molecule sensitivity in Surface-enhanced Raman scattering. Phys Rev E 62:4318ADSCrossRefGoogle Scholar
  21. 21.
    Dvoynenko MM, Goncharenko AV, Romaniuk VR, Venger EF (2001) Effects of dimension on optical transmittance of semicontinuous gold. Physica B 299:88ADSCrossRefGoogle Scholar
  22. 22.
    Raether H (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Tracts in Modern Physics, Vol. 111), Springer-Verlag, BerlinGoogle Scholar
  23. 23.
    Wokaun AW (1984) Surface enhanced electromagnetic processes. Solid State Phys 38:223CrossRefGoogle Scholar
  24. 24.
    Lynch DW, Hunter WR (1985) In: Palik ED (Ed) Handbook of Optical Constants of Solids. Academic Press, San Diego, pp 275Google Scholar
  25. 25.
    Crozier KB, Sundaramurthy A, Kino GS, Quate CF (2003) Optical antennas: Resonators for local field enhancement. J Appl Phys 94:4632ADSCrossRefGoogle Scholar
  26. 26.
    Ruck TG (1970) Radar Cross Section Handbook. Plenum press, New YorkGoogle Scholar
  27. 27.
    Kreibig U and Vollmer M (1995) Optical Properties of Metal Clusters. Springer, Berlin/HeidelbergGoogle Scholar
  28. 28.
    Martin YC, Hamann HF, Wickramasinghe HK (2001) Strength of the electric field in apertureless near-field optical microscopy. J Appl Phys 89:5774ADSCrossRefGoogle Scholar
  29. 29.
    Neubrech F, Kolb T, Lovrincic R, Fahsold G, Aizpurua J, Toimil-Molares ME, Karim S, Cornelius TW, Neumann R, and Pucci A (2006) Resonances of individual metal nanowires in the infrared. Appl Phys Lett 89:253104ADSCrossRefGoogle Scholar
  30. 30.
    Link S, Mohamed MB, El-Sayed MA (1999b) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073CrossRefGoogle Scholar
  31. 31.
    Billot L, Lamy de la Chapelle A, Grimault AS, Vial A, Barchiesi D, Bijeon JL, Adam PM, Royer P (2006) Surface enhanced raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement. Chem Phys Lett 422:303ADSCrossRefGoogle Scholar
  32. 32.
    Imura K, Nagahara T, Okamoto H (2004) Coacervate formation from natural glycolipid: One acetyl group on the headgroup triggers coacervate-to-vesicle transition. J Am Chem Soc 126:12730PubMedCrossRefGoogle Scholar
  33. 33.
    Imura K, Nagahara T, Okamoto H (2005a) Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B 109:13214PubMedCrossRefGoogle Scholar
  34. 34.
    Imura K, Nagahara T, Okamoto H (2005b) Near-field optical imaging of plasmon modes in gold nanorods. J Chem Phys 122:154701PubMedADSCrossRefGoogle Scholar
  35. 35.
    Grand J, Adam PM, Grimault AS, Vial A, Lamy de la Chapelle M, Bijeon JL, Kostcheev S, Royer P (2006) Optical extinction spectroscopy of oblate, prolate, and ellipsoid shaped gold nanoparticles: Experiments and theory. Plasmonics 1:135CrossRefGoogle Scholar
  36. 36.
    Little JW, Callcott TA, Ferrell TL, Arakawa ET (1984) Surface-plasmon radiation from ellipsoidal silver spheroids. Phys Rev B 29:1606ADSCrossRefGoogle Scholar
  37. 37.
    Purcell EM and Pennypacker CR (1973) Scattering and absorption of light by non-spherical dielectric grains. Astrophys J 186:705ADSCrossRefGoogle Scholar
  38. 38.
    Miller EK (1994) Time domain modelling in electromagnetics. J Electromagn Waves Appl 8:1125–72CrossRefGoogle Scholar
  39. 39.
    Hafner Ch, Ballist R (1983) The multiple multipole method (MMP). Int J Comput Electr Electron Eng 2:1MATHGoogle Scholar
  40. 40.
    Pendry JB and MacKinnon A (1992) Calculation of photon dispersion relations. Phys Rev Lett 69:2772PubMedADSCrossRefGoogle Scholar
  41. 41.
    García de Abajo FJ, Howie A (1998) Relativistic electron energy loss and electron induced photon emission in inhomogeneous dielectrics. Phys Rev Lett 80: 5180ADSCrossRefGoogle Scholar
  42. 42.
    García de Abajo FJ, Howie A (2002) Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys Rev B 75:115418ADSCrossRefGoogle Scholar
  43. 43.
    Aizpurua J, Hanarp P, Sutherland D, Bryant GW, Garcia de Abajo FJ, Kall M (2003) Optical properties of nanorings. Phys Rev Lett 90:057401PubMedADSCrossRefGoogle Scholar
  44. 44.
    Bryant GW, García de Abajo FJ, and Aizpurua J (2008) Mapping the plasmon resonances of metallic nanoantennas. Nano Lett 8: 631PubMedADSCrossRefGoogle Scholar
  45. 45.
    Hillenbrand R, Taubner, Keilman F (2002) Phonon-enhanced light–matter interaction at the nanometer scale. Nature 418:159PubMedADSCrossRefGoogle Scholar
  46. 46.
    Hu J, Li L, Yang W, Manna L, Wang L, Alivisatos AP (2001) Linearly polarized Emission from colloidal semiconductor quantum rods. Science 292:2060PubMedCrossRefGoogle Scholar
  47. 47.
    Gómez Rivas J, Kuttge M, Kurz H, Haring Bolivar P, Sánchez-Gil JA (2006) Low-frequency active surface plasmon optics on semiconductors. Appl Phys Lett 88:082106, 1ADSCrossRefGoogle Scholar
  48. 48.
    Englebienne P (1998) Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single of multiple epitopes. Analyst 123:1599PubMedADSCrossRefGoogle Scholar
  49. 49.
    McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057ADSCrossRefGoogle Scholar
  50. 50.
    Raschke G, Kowarik S, Franzl T, Soennichsen C, Klar TA, et al. (2003). Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett 3:935ADSCrossRefGoogle Scholar
  51. 51.
    Liebsch A and Persson BNJ (1983) Optical properties of small metallic particles in a continuous dielectric medium. J Phys C 16:5375ADSCrossRefGoogle Scholar
  52. 52.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419PubMedADSCrossRefGoogle Scholar
  53. 53.
    Emory SR, Nie S (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102PubMedCrossRefGoogle Scholar
  54. 54.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, et al. (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667ADSCrossRefGoogle Scholar
  55. 55.
    Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357ADSCrossRefGoogle Scholar
  56. 56.
    Romero I, Aizpurua J, Bryant GW, García de Abajo FJ (2006) Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimmers. Optics Express 14:9988PubMedADSCrossRefGoogle Scholar
  57. 57.
    Fromm DP, Sundaramurthy A, Schuck J, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible. Nano Lett 4:957ADSCrossRefGoogle Scholar
  58. 58.
    Li K, Stockman MI, Bergman DJ (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91, 227402PubMedADSCrossRefGoogle Scholar
  59. 59.
    Hao E, Schatz G (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357PubMedADSCrossRefGoogle Scholar
  60. 60.
    Mühlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607PubMedADSCrossRefGoogle Scholar
  61. 61.
    Karim S, Toimil-Molares ME, Maurer F, Miehe G, Ensinger W, Liu J, Cornelius TW, Neumann R (2006a) Synthesis of gold nanowires with controlled crystallographic characteristics. Appl Phys A 84:403ADSCrossRefGoogle Scholar
  62. 62.
    Karim S, Toimil-Molares ME, Balogh AG, Ensinger W, Cornelius TW, Khan EU, and Neumann R (2006b) Morphological evolution of Au nanowires controlled by Rayleigh instability. Nanotechnology 17:5954ADSCrossRefGoogle Scholar
  63. 63.
    Liu J, Duan JL, Toimil-Molares ME, Karim S, Cornelius TW, Dobrev D, Yao HJ, Sun YM, Hou MD, Mo D, Wang ZG, and Neumann R (2006) Electrochemical fabrication of single crystalline and polycrystalline Au nanowires: the influence of deposition parameters. Nanotechnology 17:1922ADSCrossRefGoogle Scholar
  64. 64.
    Toimil Molares EM, Brötz J, Buschmann, Dobrev D, Neumann R, Scholz R, Schuchert IU, Trautmann C, and Vetter J (2001a) Etched heavy ion tracks in polycarbonate as templates for copper nanowires. Nucl Instr Meth B 185:192ADSCrossRefGoogle Scholar
  65. 65.
    Toimil Molares ME, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert IU, and Vetter J (2001b) Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv Mat 13:62CrossRefGoogle Scholar
  66. 66.
    Cornelius TW, Brötz J, Chtanko N, Dobrev D, Miehe G, Neumann R, Toimil Molares ME (2005) Controlled fabrication of poly- and single-crystalline bismuth nanowires. Nanotechnology 16:246ADSCrossRefGoogle Scholar
  67. 67.
    Cornelius TW, Toimil-Molares ME, Neumann R, Karim S (2006) Finite-size effects in the electrical transport properties of single bismuth nanowires. J Appl Phys 100:114307ADSCrossRefGoogle Scholar
  68. 68.
    Toimil Molares ME, Höhberger EM, Schaeflein C, Blick RH, Neumann R, and Trautmann C (2003) Electrical characterization of electrochemically grown single copper nanowires. Appl Phys Lett 8:2139ADSCrossRefGoogle Scholar
  69. 69.
    Toimil-Molares ME, Balogh AG, Cornelius TW, Trautmann C, and Neumann R (2004) Fragmentation of nanowires driven by Rayleigh instability. Appl Phys Lett 85:5337ADSCrossRefGoogle Scholar
  70. 70.
    Rayleigh L (1878) On the instability of jets. Proc Lond Math Soc 10:4CrossRefGoogle Scholar
  71. 71.
    Nichols FA, and Mullins WW (1965) Surface- (Interface-) and Volume-diffusion contributions to morphological changes driven by capillarity. Trans Metal Soc AIME 233:1840Google Scholar
  72. 72.
    Laurent G, Félidj N, Aubard J, Lévi G, Krenn JR, Hohenau A, Schider G, Leitner A, and Aussenegg FR (2005a) Evidence of multipolar excitations in surface enhanced Raman scattering. Phys Rev B 71:045430ADSCrossRefGoogle Scholar
  73. 73.
    Laurent G, Félidj N, Aubard J, Lévi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2005b) Surface enhanced Raman scattering arising from multipolar plasmon excitation. J Chem Phys 122: 011102ADSCrossRefGoogle Scholar
  74. 74.
    Teschner U and Huebner K (1990) IR-spectroscopic data of thin insulating films on semiconductors. New methods of interpretation and analysis. Phys Status Solidi B 159:917Google Scholar
  75. 75.
    Berreman DW (1963) Infrared absorption at longitudinal optic frequency. Cubic Cryst Films Phys Rev 130:2193Google Scholar
  76. 76.
    Fumeaux C, Gritz MA, Codreanu I, Schaich WL, Gonzalez FJ, Boreman GD 2000 Measurement of the resonant lengths of infrared dipole antennas. Infrared PhysTecn 41:271ADSCrossRefGoogle Scholar
  77. 77.
    Ueno K, Mizeikis V, Juodkazis S, Sasaki K, Misawa H (2005) Optical properties of nanoengineered gold block. Opt Lett 30:2158PubMedADSCrossRefGoogle Scholar
  78. 78.
    Royer P, Bijeon JL, Goudonnet JP, Inagaki T, and Arakawa ET (1989) Optical absorbance of silver oblate particles substrate and shape effects. Surface Science 217:384ADSCrossRefGoogle Scholar
  79. 79.
    Krenn JR, Schider G, Rechberger W, Lamprecht B, Leitner A, and Aussenegg FR (2000) Design of multipolar plasmon excitations in silver nanoparticles. Appl Phys Lett 77:3379ADSCrossRefGoogle Scholar
  80. 80.
    Félidj N, Laurent G, Grand J, Aubard J, Lévi G, Hohenau A, Aussenegg FR, Krenn JR (2006) Far-field Raman imaging of short-wavelength particle plasmons on gold nanorods. Plasmonics 1:39CrossRefGoogle Scholar
  81. 81.
    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver Nanowires as Surface Plasmon Resonators. Phys Rev Lett 95:257403PubMedADSCrossRefGoogle Scholar
  82. 82.
    Schider G, Krenn JR, Gotschy W, Lamprecht B, Ditlbacher H, Leitner A, and Aussenegg FR (2001) Optical properties of Ag and Au nanowire gratings. J Appl Phys 90:3825ADSCrossRefGoogle Scholar
  83. 83.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102PubMedCrossRefGoogle Scholar
  84. 84.
    Jeanmarie DL, Duyne RPV (1977) Surface Raman spectroelectrochemistry. J Electroanal Chem 84:1CrossRefGoogle Scholar
  85. 85.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783ADSCrossRefGoogle Scholar
  86. 86.
    Otto A (2005) The chemical (electronic) contribution to surface-enhanced Raman scattering. J Raman Spectrosc 36:497ADSCrossRefGoogle Scholar
  87. 87.
    Haynes CL, Duyne RPV. (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107:7426CrossRefGoogle Scholar
  88. 88.
    Otto A (1983) On the first layer enhancement in Raman scattering of pyrioline on silver. J. de Physique C 10:37Google Scholar
  89. 89.
    Hein M, Dumas P, Sinther M, Priebe A, Lilie P, Bruckbauer A, Pucci A, Otto A (2006) Relation between surface resistance, infrared-, surface enhanced infrared- and surface enhanced Raman-spectroscopy’s of C“2H”4 and CO on copper. Surface Science 600:1017ADSCrossRefGoogle Scholar
  90. 90.
    Lombardi JR, Birke RL, Sanchez LA, Bernard I, and Sun SC (1984) The effect of molecular structure on voltage induced shifts of charge transfer excitation in surface enhanced Raman scattering. Chem Phys Lett 104:240ADSCrossRefGoogle Scholar
  91. 91.
    Johansson P, Xu H, Käll M (2005) Surface-enhanced Raman scattering and fluorescence near metal particles. Phys Rev B 72:035427ADSCrossRefGoogle Scholar
  92. 92.
    Xu H, Wang X, Persson MP, Xu HQ, Käll M, Johansson P (2004) Unified treatment of fluorescence and Raman scattering processes near metal surfaces. Phys Rev Lett 93:243002PubMedADSCrossRefGoogle Scholar
  93. 93.
    Skibbe O, Binder M, Pucci A, Otto A, Electronic contributions to infrared spectra of absorbate molecules on metal surfaces: ethylene on Cu(111). Submitted to The Journal of Chemical PhysicsGoogle Scholar
  94. 94.
    Félidj N, Aubard J, Lévi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095ADSCrossRefGoogle Scholar
  95. 95.
    Grand J, Kostcheev S, Bijeon JL, Lamy de la Chapelle M, Adam PM, Rumuantseva A, Le’rondel G, Royer P (2003) Optimization of SERS-active substrates for near-field Raman spectroscopy. Synth Met 139:621CrossRefGoogle Scholar
  96. 96.
    McFarland AD, Young MA, Dieringer JA, and Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279PubMedCrossRefGoogle Scholar
  97. 97.
    Wang H, Levin CS, Halas NJ (2005) Nanosphere arrays with controlled sub-10 nm gap as surface-enhanced Raman spectroscopy substrates. J Am Chem Soc 127:14992PubMedCrossRefGoogle Scholar
  98. 98.
    Débarre A, Jaffiol R, Julien C, Nutarelli D, Richard A, Tchénio P, Chaput F, Boilot JP (2004) Quantitative determination of the 3D dipole orientation of single molecules. Eur Phys J D 28: 67ADSCrossRefGoogle Scholar
  99. 99.
    Novotny L, Sanchez EJ, Xie XS (1998) Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams. Ultramicroscopy 71:21CrossRefGoogle Scholar
  100. 100.
    Yang W, Hulteen J, Schatz GC, and Duyne RV (1996) A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory. J Chem Phys 104 4313Google Scholar
  101. 101.
    Grimault AS, Vial A, Lamy de la Chapelle M (2006) Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method. Appl Phys B 84:115ADSCrossRefGoogle Scholar
  102. 102.
    Vial A, Grimault AS, Macias D, Barchiesi D, Lamy de la Chapelle M (2005) Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416ADSCrossRefGoogle Scholar
  103. 103.
    Calander N, Willander M (2002) Theory of surface-plasmon resonance optical field enhancement at prolate spheroids. J Appl Phys 92: 4878ADSCrossRefGoogle Scholar
  104. 104.
    Hartstein A, Kirtley JR, Tsang JC. (1980) Enhancement of the Infrared absorption from molecular monolayers with thin metal overlayers. Phys Rev Lett 45:201ADSCrossRefGoogle Scholar
  105. 105.
    Aroca RF, Ross DJ, Domingo C (2004) Surface-Enhanced Infrared Spectroscopy. Appl Spectrosc 58: 324APubMedADSCrossRefGoogle Scholar
  106. 106.
    Enders D, Pucci A (2006) Surface enhanced infrared absorption of octadecanethiol on wet chemically prepared Au nanoparticle films. Appl Phys Lett 88:184104ADSCrossRefGoogle Scholar
  107. 107.
    Osawa M (2001) Near-Field Optics and Surface Plasmon Polaritons. in: Topics in Applied Physics, Vol. 81, Springer, Berlin/Heidelberg, p 163Google Scholar
  108. 108.
    Priebe A, Pucci A, and Otto A (2006) Infrared reflection-absorption spectra of C2H4 and C2H6 on Cu: Effect of surface roughness. J Phys Chem B 110:1673PubMedCrossRefGoogle Scholar
  109. 109.
    Priebe A, Sinther M, Fahsold G, and Pucci A (2003) The correlation between film thickness and adsorbate line shape in surface enhanced infrared absorption. J Chem Phys 119:4887ADSCrossRefGoogle Scholar
  110. 110.
    Priebe A, Fahsold G, and Pucci A (2004) Strong pyramidal growth of metal films studied with IR transmittance and SEIRA of CO. J Phys Chem B 108:18174CrossRefGoogle Scholar
  111. 111.
    Bjerke AE, Griffiths PR, Theiss W (1999) Surface-enhanced infrared absorption of CO on platinized platinum. Anal Chem 71:1967CrossRefGoogle Scholar
  112. 112.
    Ducourtieux S, Podolskiy VA, Grésillon S, Buil S, Berini B, Gadenne P, Boccara AC, Rivoal JC, Bragg WD, Banerjee K, Safonov VP, Drachev VP, Ying ZC, Sarychev AK, Shalaev VM (2001) Near-Field Optical Studies of Semicontinuous Metal Films. Phys Rev B 64:165403ADSCrossRefGoogle Scholar
  113. 113.
    Pucci A (2005) IR spectroscopy of adsorbates on ultrathin metal films: Advanced optical diagnostics of surfaces, nanostructures, and ultrathin films. Physica Status Solidi (b) 242:2704ADSCrossRefGoogle Scholar
  114. 114.
    Schreiber F (2000) Structure and growth of self-assembling monolayers. Prog Surf Sci 65:151CrossRefGoogle Scholar
  115. 115.
    Seo EK et al. (2004) Atomic layer deposition of titanium oxide on self-assembled-monolayer coated gold. Chem Mater 16:1878CrossRefGoogle Scholar
  116. 116.
    Lin-Vien D, Colthup NB, Fateley WG, and Grasselli JG (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, San Diego, pp. 9Google Scholar
  117. 117.
    Neubrech F, Pucci A, Cornelius TW, Karim S, García-Etxarri A, and Aizpurua J (2008) Resonant plasmonic and vibrational coupling in a taylored nanoantenna for infrared detection. Submitted to Phys Rev LettGoogle Scholar
  118. 118.
    Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer S, Wiederrecht G (2005) Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett. 95:267405PubMedADSCrossRefGoogle Scholar
  119. 119.
    Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, van NF (2007) λ∕4 Resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett 7:28PubMedADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Annemarie Pucci
    • 1
  • Frank Neubrech
    • 1
  • Javier Aizpurua
    • 2
  • Thomas Cornelius
    • 3
  • Marc Lamy de la Chapelle
    • 4
  1. 1.Kirchhoff Institute for PhysicsUniversity of HeidelbergHeidelbergGermany
  2. 2.Donostia International Physics Center and Joint Center of Materials Physics CSICUPV/EHUDonostia-San SebastianSpain
  3. 3.Department of Materials ResearchGesellschaft für Schwerionenforschung (GSI)DarmstadtGermany
  4. 4.Laboratoire de Nanotechnologie et Instrumentation Optique, Institut Charles Delaunay, CNRS FRE 2848, Pôle Physique, Matériaux et NanotechnologieUniversité de Technologie de TroyesTroyes CedexFrance

Personalised recommendations