FDTD Spectroscopic Study of Metallic Nanostructures: On the Pertinent Employment of Tabulated Permittivities

  • Thierry Laroche
  • Alexandre Vial
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 3)


We investigate the plasmonic properties of silver nanowires. By comparing our computations with previously published experimental results, we propose a way to correct tabulated permittivities to obtain a better description of the dispersive properties of this kind of structure.


Surface Plasmon Polaritons Drude Model Silver Nanowire FDTD Method Lorentz Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Imura, T. Nagahara, and H. Okamoto. Plasmon mode imaging of single gold nanorods. J. Am. Chem. Soc., 126:12730–12731, 2004.PubMedCrossRefGoogle Scholar
  2. 2.
    K. Imura, T. Nagahara, and H. Okamoto. Near-field optical imaging of plasmon modes in gold nanorods. J. Chem. Phys., 122:154701, 2005.PubMedCrossRefADSGoogle Scholar
  3. 3.
    R.M. Dickson and L.A. Lyon. Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B, 104:6095–6098, 2000.CrossRefGoogle Scholar
  4. 4.
    J.C. Weeber, A. Dereux, C. Girard, J.R. Krenn, and J.-P. Goudonnet. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B, 60: 9061–9067, 1999.CrossRefADSGoogle Scholar
  5. 5.
    C. Girard. Near fields in nanostructures. Rep. Prog. Phys., 68:1883–1933, 2005.CrossRefADSGoogle Scholar
  6. 6.
    T. Laroche and C. Girard. Near-field optical properties of single plasmonic nanowires. Appl. Phys. Lett., 89:233119, 2006.CrossRefADSGoogle Scholar
  7. 7.
    F.I. Baida and D. Van Labeke. Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays. Phys. Rev. B, 67:155314, 2003.CrossRefADSGoogle Scholar
  8. 8.
    T. Laroche, F.I. Baida, and D. Van Labeke. Three-dimensional finite-difference time domain study of enhanced second-harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip. J. Opt. Soc. Am. B, 22:1045–1051, 2005.CrossRefADSGoogle Scholar
  9. 9.
    A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle. Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method. Appl. Phys. B 84(1–2):111–115, 2006.CrossRefADSGoogle Scholar
  10. 10.
    K.S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotroptic media. IEEE T. Antenn. Propag., 14:302–307, 1966.MATHCrossRefADSGoogle Scholar
  11. 11.
    A. Taflove and S.C. Hagness. Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. Artech House, Boston, 2000.MATHGoogle Scholar
  12. 12.
    K.S. Kunz and R.J. Luebbers. The Finite-Difference Time-Domain Method for Electromagnetics. CRC Press, New York, 1993.Google Scholar
  13. 13.
    D.M. Sullivan. Electromagnetic Simulation Using the FDTD Method. Wiley-IEEE Press, 2000.Google Scholar
  14. 14.
    M.C. Beard and C.A. Schmuttenmaer. Using the finite-difference time-domain pulse propagation method to simulate time-resolved THz experiments. J. Chem. Phys., 114(7):2903–2909, 2001.CrossRefADSGoogle Scholar
  15. 15.
    M. Moskovits, I. Srnová-Sloufová, and B. Vlcková. Bimetallic ag-au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys., 116(23):10435–10446, 2002.CrossRefADSGoogle Scholar
  16. 16.
    N.G. Skinner and D.M. Byrne. Finite-difference time-domain analysis of frequency-selective surfaces in the mid-infrared. Appl. Opt., 45(9):1943–1950, 2006.PubMedCrossRefADSGoogle Scholar
  17. 17.
    A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle. Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with the FDTD method. Phys. Rev. B, 71(8):085416–085422, 2005.CrossRefADSGoogle Scholar
  18. 18.
    T. Grosges, A. Vial, and D. Barchiesi. Models of near-field spectroscopic studies: comparison between finite-element and finite-difference methods. Opt. Express, 13(21):8483–8497, 2005.PubMedCrossRefADSGoogle Scholar
  19. 19.
    A. Hohenau, J.R. Krenn, J. Beermann, S.I. Bozhevolnyi, S.G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal. Spectroscopy and nonlinear microscopy of au nanoparticle arrays: experiment and theory. Phys. Rev. B, 73(15):155404, 2006.CrossRefADSGoogle Scholar
  20. 20.
    T.-W. Lee and S.K. Gray. Subwavelength light bending by metal slit structures. Opt. Express, 13(24):9652–9659, 2005.PubMedCrossRefADSGoogle Scholar
  21. 21.
    H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera. Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization. Phys. Rev. Lett., 98(10):107402, 2007.PubMedCrossRefADSGoogle Scholar
  22. 22.
    G. Parent, D. Van Labeke, and F.I. Baida. Theoretical study of transient phenomena in near-field optics. J. Microsc., 202(2):296–306, 2001.PubMedCrossRefMathSciNetGoogle Scholar
  23. 23.
    R. Qiang, R.L. Chen, and J. Chen. Modeling electrical properties of gold films at infrared frequency using fdtd method. Int. J. Infrared Millimeter Waves, 25(8):1263–1270, 2004.CrossRefADSGoogle Scholar
  24. 24.
    A. Mohammadi and Mario Agio. Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces. Opt. Express, 14(23): 11330–11338, 2006.PubMedCrossRefADSGoogle Scholar
  25. 25.
    P.G. Etchegoin, E.C. Le Ru, and M. Meyer. An analytic model for the optical properties of gold. J. Chem. Phys., 125:164705, 2006.PubMedCrossRefADSGoogle Scholar
  26. 26.
    C.F. Bohren and D.R. Huffman. Absorption and Scattering of Light by Small Particles. Wiley, 1983.Google Scholar
  27. 27.
    E.D. Palik, editor. Handbook of Optical Constants of Solids. Academic Press, 1985.Google Scholar
  28. 28.
    H. Ditlbacher, A. Hohenau, D. wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, and J.R. Krenn. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett., 95:257403, 2005.PubMedCrossRefADSGoogle Scholar
  29. 29.
    P. Ghenuche, R. Quidant, and G. Badenes. Cumulative plasmon field enhancement in finite metal particle chains. Opt. Lett., 30:1882–1884, 2005.PubMedCrossRefADSGoogle Scholar
  30. 30.
    C. Girard and E. Dujardin. Near-field optical properties of top-down and bottom-up nanostructures. J. Opt. A 8:s73–s86, 2005.Google Scholar
  31. 31.
    C. Girard and R. Quidant. Near-field optical transmittance of metal paticle chain waveguides. Opt. Express, 12:6141–6146, 2004.PubMedCrossRefADSGoogle Scholar
  32. 32.
    E.D. Palik (Ed). Handbook of Optical Constants of Solids, Vol. II, Academic Press, 1991.Google Scholar
  33. 33.
    P.B. Johnson and R.W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6: 4370–4379, 1972.CrossRefADSGoogle Scholar
  34. 34.
    M.J. Weber. Handbook of Optical Materials. CRC Press, 2003.Google Scholar
  35. 35.
    S. Kawata, editor. Near-field optics and surface plasmon polaritons, Springer, chapter 5, pp 97–122, 2001.Google Scholar
  36. 36.
    D. Macías, A. Vial, and D. Barchiesi. Application of evolution strategies for the solution of an inverse problem in near-field optics. J. Opt. Soc. Am. A, 21:1465–1471, 2004.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thierry Laroche
    • 1
  • Alexandre Vial
    • 1
  1. 1.Institut Charles DelaunayUniversité de technologie de Troyes, CNRS FRE 2848 Laboratoire de Nanotechnologie et d’Instrumentation Optique 12Troyes CedexFrance

Personalised recommendations