Advertisement

Optical Anisotropy of Semiconductor Nanowires

  • Jaime Gómez Rivas
  • Otto L. Muskens
  • Magnus T. Borgström
  • Silke L. Diedenhofen
  • Erik P. A. M. Bakkers
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 3)

Abstract

Semiconductor nanowires are novel nanostructures full of promise for optical applications. Nanowires have subwavelength diameters and large aspect ratios, which combined with the high permittivity of semiconductors lead to a strong optical anisotropy. We review in this chapter this optical anisotropy, focusing on the polarization anisotropy of the photoluminescence of individual nanowires and the propagation of light through birefringent ensembles of aligned nanowires.

Recent developments in bottom-up nanofabrication techniques allow the growth of free-standing semiconductor nanowires with controlled composition, lateral dimensions of typically 10–100 nm, and lengths of several micrometers (see Fig. 6.1). The small lateral dimensions of nanowires enables to grow them heteroepitaxially onto different substrates [1–3] or even to design heterostructures with segments, shells, and/or quantum dots of different semiconductors in a single nanowire [4–8]. Nanowires are full of promise for monolithic integration of high-performance semiconductors with new functionality [8–11] into existing silicon technology [2, 3, 12]. These nanostructures will offer new possibilities as next generation of optical and optoelectronical components. Junctions in semiconductor nanowires and light emitting devices have been demonstrated [4, 13–17]. Although the quantum efficiency of these nano-LEDs is still low, fast progress is being made on the passivation of the nanowire surface and the increase of their efficiency [18, 19]. Also, optically and electrically driven nanowire lasing have been reported [9, 20, 21]. Nanowires have been proposed as polarization sensitive photodetectors [22, 23] and as a source for single photons [8, 24].

The encouraging perspectives for novel applications has lead to improved control over nanowire synthesis and materials composition [4, 5, 25–27]. However, little is known about how light is emitted by individual nanowires or how light is scattered by ensembles of these nanostructures. The large geometrical anisotropy of nanowires and the high refractive index of semiconductors give rise to a huge optical anisotropy, which has been reported as a strongly polarized photoluminescence of individual nanowires along their long axis [22, 28]. In this chapter we review the polarization anisotropy in the photoluminescence of individual nanowires. We also describe the propagation of light through ensembles of nanowires oriented perpendicularly to the surface of a substrate. The controlled growth and alignment of the nanowires leads to a medium with giant birefringence [29], i.e., a medium with a large difference in refractive indexes for different polarizations. The giant birefringence in ensembles of nanowires can be easily tuned by changing the semiconductor filling fraction and is not restricted to narrow frequency bands as in periodic structures [30]. Broadband and giant birefringence constitutes an elegant example of the extreme optical anisotropy of nanowires, which may lead to nanoscale polarization controlling media [31], the efficient generation of nonlinear signals [32], and the observation of novel surface electromagnetic modes on birefringent materials [33].

Keywords

Optical Anisotropy Polarization Anisotropy Nanowire Growth Semiconductor Nanowires Polarization Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Yazawa, M. Koguchi, K. Hiruma: Appl. Phys. Lett. 58, 1080 (1991).CrossRefADSGoogle Scholar
  2. 2.
    T. Martensson, et al: Nano Lett. 4, 1987 (2004).CrossRefADSGoogle Scholar
  3. 3.
    E.P. Bakkers, et al: Nat. Mater. 3, 769 (2004).PubMedCrossRefADSGoogle Scholar
  4. 4.
    M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber: Nature 415, 617 (2002).PubMedCrossRefADSGoogle Scholar
  5. 5.
    M.T. Bjork, et al: Nano Lett. 2, 87 (2002).CrossRefADSGoogle Scholar
  6. 6.
    D.Y. Li, Y. Wu, R. Fan, P.D. Yang, A. Majumdar: Appl. Phys. Lett. 83, 3186 (2003).CrossRefADSGoogle Scholar
  7. 7.
    L.J. Lauhon, M.S. Gudiksen, C.L. Wang, C.M. Lieber: Nature 420, 57 (2002).PubMedCrossRefADSGoogle Scholar
  8. 8.
    M.T. Borgstr\ddot{o}m, V. Zwiller, E. Müller, A. Imamoglu: Nano Lett. 5, 1439 (2005).CrossRefADSGoogle Scholar
  9. 9.
    J.C. Johnson, et al: Nature Mat. 1, 106 (2002).CrossRefADSGoogle Scholar
  10. 10.
    G.F. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber: Nature Biotechnology 23, 1294–1301 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    J.A. van Dam, Y.V. Nazarov, E.P.A.M. Bakkers, S. De Franceschi, L.P. Kouwenhoven: Nature 442, 667 (2006).PubMedCrossRefADSGoogle Scholar
  12. 12.
    T.I. Kamins, X. Li, R.S. Williams: Nano Lett. 4, 503 (2004).CrossRefADSGoogle Scholar
  13. 13.
    K. Haraguchi, T. Katsuyama, K. Hiruma, K. Ogawa: Appl. Phys. Lett. 60, 745 (1992).CrossRefADSGoogle Scholar
  14. 14.
    H.M. Kim, et al: Nano Lett. 4, 1059 (2004).CrossRefADSGoogle Scholar
  15. 15.
    J.M. Bao, M.A. Zimmler, F. Capasso, X.W. Wang, Z.F. Ren: Nano Lett. 6, 1719 (2006).PubMedCrossRefADSGoogle Scholar
  16. 16.
    F. Qian, S. Gradecak, Y. Li, C.Y. Wen, C.M. Lieber: Nano Lett. 5, 2287 (2005).PubMedCrossRefADSGoogle Scholar
  17. 17.
    E.D. Minot, et al: Nano Lett. 7, 367 (2007).PubMedCrossRefADSGoogle Scholar
  18. 18.
    L.K. van Vugt, S.J. Veen, E.P.A.M. Bakkers, A.L. Roest, D. Vanmaekelbergh: J. Am. Chem. Soc. 127, 12357 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Mattila, T. Hakkarainen, H. Lipsanen, H. Jiang, E.I. Kauppinen: Appl. Phys. Lett. 90, 033101 (2007).CrossRefADSGoogle Scholar
  20. 20.
    M.H. Huang, et al: Science 292, 1897 (2001).PubMedCrossRefADSGoogle Scholar
  21. 21.
    X. Duan, Y. Huang, R. Agarwal, C.M. Lieber: Nature 421, 241 (2003).PubMedCrossRefADSGoogle Scholar
  22. 22.
    J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber: Science 293, 1455 (2001).PubMedCrossRefADSGoogle Scholar
  23. 23.
    H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang: Adv. Mat. 14, 158 (2002).CrossRefGoogle Scholar
  24. 24.
    N. Panev, A.I. Persson, N. Skold, L. Samuelson: Appl. Phys. Lett. 83, 2238 (2003).CrossRefADSGoogle Scholar
  25. 25.
    Y.Y. Wu, R. Fan, P.D. Yang: Nano Lett. 2, 83 (2002).CrossRefADSGoogle Scholar
  26. 26.
    J. Goldberger, A.I. Hochbaum, R. Fan, P.D. Yang: Nano Lett. 6, 973 (2006).CrossRefADSGoogle Scholar
  27. 27.
    M.T. Borgström, M.A. Verheijen, G. Immink, T. de Smet, E.P.A.M. Bakkers: Nanotechnol. 17, 4010 (2006).CrossRefADSGoogle Scholar
  28. 28.
    J. Qi, A.M. Belcher, J.M. White: Appl. Phys. Lett. 82, 2616 (2003).CrossRefADSGoogle Scholar
  29. 29.
    O.L. Muskens, M.T. Borgström, E.P.A.M. Bakkers, J. Gómez Rivas: Appl. Phys. Lett. 89, 233117 (2006).CrossRefADSGoogle Scholar
  30. 30.
    R.-C. Tyan, et al: J. Opt. Soc. Am. A 14, 1627 (1997).CrossRefADSGoogle Scholar
  31. 31.
    M. Kotlyar, L. Bolla, M. Midrio, L. O’Faolain, T. Krauss: Opt. Express 13, 5040 (2005).PubMedCrossRefADSGoogle Scholar
  32. 32.
    M.J.A. de Dood, W.T.M. Irvine, D. Bouwmeester: Phys. Rev. Lett. 93, 040504 (2005).CrossRefGoogle Scholar
  33. 33.
    D. Artigas, L. Torner: Phys. Rev. Lett. 94, 013901 (2005).PubMedCrossRefADSGoogle Scholar
  34. 34.
    R.S. Wagner, W.C. Ellis: Appl. Phys. Lett. 4, 89 (1964).CrossRefADSGoogle Scholar
  35. 35.
    E.I. Givargizov: J. Crystal Growth 31, 20 (1975).CrossRefADSGoogle Scholar
  36. 36.
    K. Hiruma, H. Murakoshi, M. Yazawa, T. Katsuyama: J. Crystal Growth 163, 226 (1996).CrossRefADSGoogle Scholar
  37. 37.
    K. Hiruma, et al: J. Appl. Phys. 77, 447–462 (1995).CrossRefADSGoogle Scholar
  38. 38.
    K. Haraguchi, K. Hiruma, K. Hosomi, M. Shirai, T. Katsuyama: J. Vac. Sci. Technol. B 15, 1685 (1997).CrossRefGoogle Scholar
  39. 39.
    A.K. Viswanath, K. Hiruma, M. Yazawa, K. Ogawa, T. Katsuyama: Microwave and Opt. Technol. Lett. 7, 94 (1994).CrossRefADSGoogle Scholar
  40. 40.
    Born, Wolf: Principles of Optics (Cambridge University Press, Cambridge 1997) pp 4–7.Google Scholar
  41. 41.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii: Electrodynamics of Continuous Media (Elsevier Butterworth Heinemann, Amsterdam 2004) pp 39–40.Google Scholar
  42. 42.
    H.E. Ruda, S. Shik: Phys. Rev. B 72, 115308 (2005).CrossRefADSGoogle Scholar
  43. 43.
    C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, Weinheim 2004).Google Scholar
  44. 44.
    A. Ishimaru: Wave Propagation and Scattering in Random Media (Academic Press, New York 1978).Google Scholar
  45. 45.
    P. Sheng: Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic Press, New York 1995).Google Scholar
  46. 46.
    Hecht: Optics (Addison Wesley, San Francisco 2002) pp 336–344.Google Scholar
  47. 47.
    D.J. Bergman, D. Stroud: Solid State Phys. 46, 197 (1992).Google Scholar
  48. 48.
    A. Kirchner, K. Busch, C.M. Soukoulis: Phys. Rev. B 57, 277 (1998).CrossRefADSGoogle Scholar
  49. 49.
    F. Genereux, S.W. Leonard, H.M. van Driel, A. Birner, U. Gösele: Phys. Rev. B 63, R161101 (2001).CrossRefADSGoogle Scholar
  50. 50.
    N. Künzner, et al: Opt. Lett. 26, 1265 (2001).PubMedCrossRefADSGoogle Scholar
  51. 51.
    L. Markham, et al: Appl. Phys. Lett. 86, 011912 (2005).CrossRefADSGoogle Scholar
  52. 52.
    C.J. Oton et al: Appl. Phys. Lett. 81, 4919 (2002).CrossRefADSGoogle Scholar
  53. 53.
    S.L. Diedenhofen, O.L Muskens, M.T. Borgström, E.P.A.M. Bakkers. J. Gómez Rivas: Unpublished.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jaime Gómez Rivas
    • 1
  • Otto L. Muskens
    • 1
  • Magnus T. Borgström
    • 2
  • Silke L. Diedenhofen
    • 1
  • Erik P. A. M. Bakkers
    • 2
  1. 1.FOM Institute for Atomic and Molecular PhysicsAMOLFAE EindhovenThe Netherlands
  2. 2.Philips Research LaboratoriesAE EindhovenThe Netherlands

Personalised recommendations