Physical Properties of GaN Nanotubes as Revealed by Computer Simulation

  • Zhiguo Wang
  • Fei Gao
  • Xiaotao Zu
  • William J. Weber
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 3)


Single-crystalline wurtzite GaN nanotubes have been synthesized recently with proposed applications in nanoscale electronics, optoelectronics, and the biochemical sensing field. In this work, molecular dynamics methods with a Stillinger-Weber potential have been used to investigate the melting behavior, thermal conductivity, and mechanical properties of wurtzite-type single-crystalline GaN nanotubes. (1) The simulations show that the melting temperature of the GaN nanotubes increases with the thickness of the nanotubes to a saturation value, which is close to the melting temperature of a bulk GaN. The results reveal that the nanotubes begin to melt at the surface, and then the melting rapidly extends to the interior of the nanotubes as the temperature increases. (2) The thermal conductivity of nanotubes is smaller than that of the bulk GaN single crystal. The thermal conductivity is also found to decrease with temperature and increase with increasing wall thickness of the nanotubes. The change of phonon spectrum and surface inelastic scattering may account for the reduction of thermal conductivity in the nanotubes, while thermal softening and high-frequency phonon interactions at high temperatures may provide an explanation for its decrease with increasing temperature. (3) The simulation results show that at low temperatures, the nanotubes show brittle properties, whereas at high temperatures, they behave as ductile materials. The brittle to ductile transition temperature generally increases with increasing thickness of the nanotubes and strain rate. (4) The simulation temperature, tube length, and strain rate all can affect the buckling behavior of GaN nanotubes. The critical stress decreases with the increase of simulation temperature and tube length. The tube length dependence of buckling is compared with those from the analysis of equivalent continuum structures using Euler buckling theory.


Thermal Conductivity Critical Stress Tube Length Melting Behavior Molecular Dynamic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature (London) 354:56–58CrossRefADSGoogle Scholar
  2. 2.
    Durgun E, Tongay S, Ciraci S (2005) Silicon and III–V compound nanotubes: Structural and electronic properties. Phys. Rev. B 72:075420CrossRefADSGoogle Scholar
  3. 3.
    Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen SR, Tenne R (1997) Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature (London) 387:791–793CrossRefADSGoogle Scholar
  4. 4.
    Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulfide. Nature (London) 360:444–446CrossRefADSGoogle Scholar
  5. 5.
    Feldman Y, Wasserman E, Srolovitz DJ, Tenne R (1995) High-rate, gas-phase growth of mos2 nested inorganic fullerenes and nanotubes. Science 267:222–225PubMedCrossRefADSGoogle Scholar
  6. 6.
    Tondare VN, Balasubramanian C, Shende S, Joag DS, Godbale VP, Bhoraskar SV (2002) Field emission from open ended aluminum nitride nanotubes. Appl. Phys. Lett. 80:4813–4815CrossRefADSGoogle Scholar
  7. 7.
    Loiseau A, Willaime F, Demoncy N, Hug G, Pascard H (1996) Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 76:4737PubMedCrossRefADSGoogle Scholar
  8. 8.
    Liliental-Weber Z, Chen Y, Ruvimov S, Washburn J (1997) Formation mechanism of nanotubes in GaN. Phys. Rev. Lett. 79:2835–2838CrossRefADSGoogle Scholar
  9. 9.
    Lauret JS, Arenal R, Ducastelle F, Loiseau A, Cau M, Attal-Tretout B, Rosencher E, Goux-Capes L (2005) Optical transitions in single-wall boron nitride nanotubes. Phys. Rev. Lett. 94:037405PubMedCrossRefADSGoogle Scholar
  10. 10.
    Johnson JC, Choi HJ, Knutsen KP, Schaller RD, Yang PD, Saykally RJ (2002) Single gallium nitride nanowire lasers. Nature Mater. 1:106–110CrossRefADSGoogle Scholar
  11. 11.
    Morkoc H, Strite S, Gao GB, Lin ME, Sverdlov B, Burns M (1994) Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies. J. Appl. Phys. 76: 1363–1398CrossRefADSGoogle Scholar
  12. 12.
    Goldberger J, He RR, Zhang YF, Lee S, Yan HQ, Choi HJ, Yang PD (2003) Single-crystal gallium nitride nanotubes. Nature (London) 422:599–602CrossRefADSGoogle Scholar
  13. 13.
    Lu MC, Chueh YL, Chen LJ, Chou LJ, Hsiao HL, Yang AB (2005) Synthesis and formation mechanism of gallium nitride nanotubular structure. Electrochem Solid State Lett. 8: G153–G155CrossRefGoogle Scholar
  14. 14.
    Lee SM, Lee YH, Huang YG, Elsner J, Porezag D, Frauenheim T (1999) Stability and electronic structure of GaN nanotubes from density-functional calculations. Phys. Rev. B 60:7788–7791CrossRefADSGoogle Scholar
  15. 15.
    Jeng YR, Tsai PC, Fang TH (2004) Molecular dynamics investigation of the mechanical properties of gallium nitride nanotubes under tension and fatigue. Nanotechnology 15:1737–1744CrossRefADSGoogle Scholar
  16. 16.
    Kang JW, Hwang HJ (2004a) Atomistic study of III-nitride nanotubes. Comput. Mater. Sci. 31:237–246Google Scholar
  17. 17.
    Kang JW, Huang HJ (2004b) Molecular dynamics simulations of single-wall GaN nanotubes. Mol. Simulat. 30:29–35CrossRefGoogle Scholar
  18. 18.
    Xu B, Lu AJ, Pan BC, Yu QX (2005) Atomic structures and mechanical properties of single-crystal GaN nanotubes. Phys. Rev. B 71:125434CrossRefADSGoogle Scholar
  19. 19.
    Zhang M, Su ZM, Yan LK, Qiu YQ, Chen GH, Wang RS (2005) Theoretical interpretation of different nanotube morphologies among Group III (B, Al, Ga) nitrides. Chem. Phys. Lett. 408:145–149CrossRefADSGoogle Scholar
  20. 20.
    Miao L, Bhethanabotla VR, Joseph B (2005) Melting of Pd clusters and nanowires: A comparison study using molecular dynamics simulation. Phys. Rev. B 72:134109CrossRefADSGoogle Scholar
  21. 21.
    Wen YH, Zhu ZZ, Zhu RZ, Shao GF (2004) Size effects on the melting of nickel nanowires: A molecular dynamics study. Phys. E 25:47–54CrossRefGoogle Scholar
  22. 22.
    Wang Q, Sun Q, Jena P (2005) Ferromagnetism in Mn-doped GaN nanowires. Phys. Rev. Lett. 95:167202PubMedCrossRefADSGoogle Scholar
  23. 23.
    Stillinger FH, Weber TA (1985) Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B 31:5262–5271CrossRefADSGoogle Scholar
  24. 24.
    Aïchoune N, Potin V, Ruterana P, Hairie A, Nouet G, Paumier E (2000) An empirical potential for the calculation of the atomic structure of extended defects in wurtzite GaN. Comput. Mater. Sci. 17:380–383CrossRefGoogle Scholar
  25. 25.
    Béré A, Serra A (2001) Atomic structure of dislocation cores in GaN. Phys. Rev. B 65:205323CrossRefGoogle Scholar
  26. 26.
    Kioseoglou J, Polatoglou HM, Lymperakis L, Nouet G, Komninou Ph (2003) A modified empirical potential for energetic calculations of planar defects in GaN. Comput. Mater. Sci. 27:43–49CrossRefGoogle Scholar
  27. 27.
    Xu B, Pan BC (2006) The effect of atomic vacancies and grain boundaries on the mechanical properties of single-crystal GaN nanotubes. J. Appl. Phys. 99:104314CrossRefADSGoogle Scholar
  28. 28.
    Reiss H, Mirabel P, Whetten RL (1988) Capillarity theory for the coexistence of liquid and solid clusters. J. Phys. Chem. 92:7241–7246CrossRefGoogle Scholar
  29. 29.
    Peters KF, Cohen JB, Chung YW (1998) Melting of Pb nanocrystals. Phys. Rev. B 57: 13430–13438CrossRefADSGoogle Scholar
  30. 30.
    Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 77:99–102PubMedCrossRefADSGoogle Scholar
  31. 31.
    Dippel M, Maier A, Gimple V, Wider H, Evenson WE, Rasera RL, Schatz G (2001) Size-dependent melting of self-assembled indium nanostructures. Phys. Rev. Lett. 87:095505PubMedCrossRefADSGoogle Scholar
  32. 32.
    Huang KC, Wang T, Joannopoulos JD (2005) Nanoscale properties of melting at the surface of semiconductors. Phys. Rev. B 72:195314CrossRefADSGoogle Scholar
  33. 33.
    Li H, Wang BL, Wang JL, Wang GH (2004) Melting behavior of one-dimensional zirconium nanowire. J. Chem. Phys. 120:3431–3438CrossRefADSGoogle Scholar
  34. 34.
    Karpinski J, Jun J, Porowski S (1984) Equilibrium pressure of n-2 over GaN and high-pressure solution growth of GaN. J. Cryst. Growth 66:1–10CrossRefADSGoogle Scholar
  35. 35.
    Van Vechten JA (1973) Quantum dielectric theory of electronegativity in covalent systems. III. pressure–temperature phase diagrams, heats of mixing, and distribution coefficients. Phys. Rev. B 7:1479–1507CrossRefADSGoogle Scholar
  36. 36.
    Nord J, Albe K, Erthart P, Nordlund K (2003) Modelling of compound semiconductors: Analytical bond-order potential for gallium, nitrogen, and gallium nitride. J. Phys. Condens. Matter 15:5649–5662CrossRefADSGoogle Scholar
  37. 37.
    Harafuji K, Tsuchiya T, Kawamura K (2004) Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal. J. Appl. Phys. 96:2501–2512CrossRefADSGoogle Scholar
  38. 38.
    Fang KC, Weng CI (2005) An investigation into the melting of silicon nanoclusters using molecular dynamics simulations. Nanotechnology 16:250–256CrossRefADSGoogle Scholar
  39. 39.
    Cleveland CL, Luedtke WD, Landman U (1999) Melting of gold clusters. Phys. Rev. B 60:5065–5077CrossRefADSGoogle Scholar
  40. 40.
    Delogu F (2005) Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: Molecular dynamics simulations. Phys. Rev. B 72:205418CrossRefADSGoogle Scholar
  41. 41.
    Northrup JE, Neugebauer J (1996) Theory of GaN(10(1)over-bar-0) and (11(2)over-bar-0) surfaces. Phys. Rev. B 53:10477–10480CrossRefADSGoogle Scholar
  42. 42.
    Liu BD, Bando Y, Tang CC, Shen GZ, Golberg D, Xu FF (2006) Wurtzite-type faceted single-crystalline GaN nanotubes. Appl. Phys. Lett. 88:093120CrossRefADSGoogle Scholar
  43. 43.
    Lü X, Shen WZ, Chu JH (2002) Size effect on the thermal conductivity of nanowires. J. Appl. Phys. 91:1542–1552CrossRefADSGoogle Scholar
  44. 44.
    Volz SG, Chen G (1999) Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett. 75:2056–2058CrossRefADSGoogle Scholar
  45. 45.
    Kulkarni AJ, Zhou M (2006) Size-dependent thermal conductivity of zinc oxide nanobelts. Appl. Phys. Lett. 88:141921CrossRefADSGoogle Scholar
  46. 46.
    Shi L, Hao Q, Yu C, Mingo NY, Kong X, Wang ZL (2004) Thermal conductivities of individual tin dioxide nanobelts. Appl. Phys. Lett. 84:2638CrossRefADSGoogle Scholar
  47. 47.
    Allen PB, Feldman JL (1993) Thermal-conductivity of disordered harmonic solids. Phys. Rev. B 48:12581–12588CrossRefADSGoogle Scholar
  48. 48.
    Hardy RJ (1963) Energy-flux operator for a lattice. Phys. Rev. 132:168–177MATHCrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Volz SG, Chen G (2000) Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys. Rev. B 61:2651–2656CrossRefADSGoogle Scholar
  50. 50.
    Hirosaki N, Ogata S, Kocer C, Kitagawa H, Nakamura Y (2002) Molecular dynamics calculation of the ideal thermal conductivity of single-crystal alpha- and beta-Si3N4. Phys. Rev. B 65:134110CrossRefADSGoogle Scholar
  51. 51.
    Tretiakov KV, Scandolo S (2004) Thermal conductivity of solid argon from molecular dynamics simulations. J. Chem. Phys. 120:3765–3769PubMedCrossRefADSGoogle Scholar
  52. 52.
    Daly BC, Maris HJ, Imamura K, Tamura S (2002) Molecular dynamics calculation of the thermal conductivity of superlattices. Phys. Rev. B 66:024301CrossRefADSGoogle Scholar
  53. 53.
    Konashi K, Ikeshoji T, Kawazoe Y, Matsui H (2003) A molecular dynamics study of thermal conductivity of zirconium hydride. J. Alloys Comp. 356–357:279–282CrossRefGoogle Scholar
  54. 54.
    Che J, Cagin T, Deng W, Goddard WA (2000) Thermal conductivity of diamond and related materials from molecular dynamics simulations. J. Chem. Phys. 113:6888–6900CrossRefADSGoogle Scholar
  55. 55.
    Fevre M, Finel A, Caudrom R, Mevrel R (2005) Local order and thermal conductivity in yttria-stabilized zirconia. II. Numerical and experimental investigations of thermal conductivity. Phys. Rev. B 72:104118CrossRefADSGoogle Scholar
  56. 56.
    Evans D, Morris G (1990) Statistical Mechanics of Non-Equilibrium Liquids, Academic Press, LondonGoogle Scholar
  57. 57.
    Maeda A, Munakata T (1995) Lattice thermal-conductivity via homogeneous nonequilibrium molecular-dynamics. Phys. Rev. E 52:234–239CrossRefADSGoogle Scholar
  58. 58.
    Motoyama S, Ichikawa Y, Hiwatari Y, Oe A (1999) Thermal conductivity of uranium dioxide by nonequilibrium molecular dynamics simulation. Phys. Rev. B 60:292–298CrossRefADSGoogle Scholar
  59. 59.
    Berber S, Kwon YK, Tamanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84:4613–4616PubMedCrossRefADSGoogle Scholar
  60. 60.
    Zhang F, Isbister DJ, Evans DJ (2000) Nonequilibrium molecular dynamics simulations of heat flow in one-dimensional lattices. Phys. Rev. E 61:3541–3546CrossRefADSGoogle Scholar
  61. 61.
    Haile JM (1992) Molecular Dynamics Simulation, Wiley, New YorkGoogle Scholar
  62. 62.
    Jeżowski A, Danilchenko BA, Boćkowski M, Grzegory I, Krukowski S, Suski T, Paszkievicz T (2003) Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Commun. 128:69–73CrossRefADSGoogle Scholar
  63. 63.
    Florescu DI, Asnin VM, Pollak FH (2000) Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy. Appl. Phys. Lett. 77:1464–1466CrossRefADSGoogle Scholar
  64. 64.
    Zimann JM (1960) Electrons and phonons, Clarendon Press, OxfordGoogle Scholar
  65. 65.
    Stroscio MA, Sirenko YM, Yu S, Kim KW (1996) Acoustic phonon quantization in buried waveguides and resonators. J. Phys. Condens. Matter 8:2143–2151CrossRefADSGoogle Scholar
  66. 66.
    Balandin A, Wang KL (1998) Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58: 1544–1549CrossRefADSGoogle Scholar
  67. 67.
    Huang MJ, Chong WY, Chang TM (2006) The lattice thermal conductivity of a semiconductor nanowire. J. Appl. Phys. 99:113318Google Scholar
  68. 68.
    Liang LH, Li BW (2006) Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B 73:153303CrossRefADSGoogle Scholar
  69. 69.
    Suzuki T, Yasutomi T, Tokuoka T, Yonenaga I (1999a) Plastic deformation of GaAs at low temperatures. Phil. Mag. A 79:2637–2654CrossRefADSGoogle Scholar
  70. 70.
    Suzuki T, Yasutomi T, Tokuoka T, Yonenaga I (1999b) Plasticity of III–V compounds at low temperatures. Phys. Status Solidi A 171:47–52CrossRefADSGoogle Scholar
  71. 71.
    Pirouz P, Samant AV, Hong MH, Moulin A, Kubin LP (1999) On temperature dependence of deformation mechanism and the brittle-ductile transition in semiconductors. J. Mater. Res. 14:2783–2793CrossRefADSGoogle Scholar
  72. 72.
    Zhang M, Hobgood HM, Demenet JL, Pirouz P (2003) Transition from brittle fracture to ductile behavior in 4H-SiC. J. Mater. Res. 18:1087–1095CrossRefADSGoogle Scholar
  73. 73.
    Hirth JP, Lothe J (1982) Theory of Dislocations, 2nd ed., Wiley, New YorkGoogle Scholar
  74. 74.
    Rabier J, George A (1987) Dislocations and plasticity in semiconductors. II. The relation between dislocation dynamics and plastic-deformation. Rev. Phys. Appl. 22:1327–1351Google Scholar
  75. 75.
    Suzuki T, Nishisako T, Taru T, Yasutomi T (1998) Plastic deformation of InP at temperatures between 77 and 500 K. Phil. Mag. Lett. 77:173–180CrossRefADSGoogle Scholar
  76. 76.
    Boivin P, Rabier J, Garem H (1990) Plastic-deformation of GaAs single-crystals as a function of electronic doping. I. Medium temperatures (150–650C). Phil. Mag. A 61:619–645CrossRefADSGoogle Scholar
  77. 77.
    Pirouz P, Zhang M, Demenet JL, Hobgood HM (2003) Yield and fracture properties of the wide band-gap semiconductor 4H-SiC. J. Appl. Phys. 93:3279–3290CrossRefADSGoogle Scholar
  78. 78.
    Kamimura Y, Kirchner HOK, Suzuki T (1999) Yield strength and brittle-to-ductile transition of boron-nitride and gallium-nitride. Scr. Mater. 41:583–587CrossRefGoogle Scholar
  79. 79.
    Rafii-Tabar H (2004) Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Phys. Rep. 390:235–452CrossRefADSGoogle Scholar
  80. 80.
    Hung SC, Su YK, Fang TH, Chang SJ, Ji LW (2005) Buckling instabilities in GaN nanotubes under uniaxial compression. Nanotechnology 16:2203–2208CrossRefADSGoogle Scholar
  81. 81.
    Nam CY, Jaroenapibal P, Tham D, Luzzi DE, Evoy S, Fisher JE (2006) Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett. 6:153–158PubMedCrossRefADSGoogle Scholar
  82. 82.
    Timoshenko SP, Gere JM (1961) Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York, p. 541Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zhiguo Wang
    • 1
  • Fei Gao
    • 2
  • Xiaotao Zu
    • 1
  • William J. Weber
    • 2
  1. 1.Department of Applied PhysicsUniversity of Eletronic Science and Technology of ChinaChengduP.R. China
  2. 2.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations