One-Dimensional SiC Nanostructures: Synthesis and Properties

  • Weimin Zhou
  • Yafei Zhang
  • Xiaoming Niu
  • Guoquan Min
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 3)


SiC with unique properties, such as wide band gap, excellent thermal conductivity, chemical inertness, high electron mobility, and biocompatibility, promises well for applications in microelectronics and optoelectronics, as well as nanocomposites. The chapter reviews the recent progress on one-dimensional SiC nanostructures in both experimental and theoretical level, including synthesis methods and some properties (field emission, optical, electronic transport, mechanical, photocatalyst, and hydrogen storage) of SiC nanowires. Importantly, some novel results on SiC nanowires were elucidated clearly in our laboratory. Personal remarks end with some views on development and application of one-dimensional SiC nanostructures.


Boron Nitride Nanowire Array Boron Nitride Nanotubes Highly Orient Pyrolitic Graphite Coaxial Nanocables 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu W, Lieber CM (2006) Semiconductor nanowires. J. Phys. D: Appl. Phys. 39:R387–R406ADSCrossRefGoogle Scholar
  2. 2.
    Thelander C, Agarwal P (2006) Nanowire-based one-dimensional electronics. Mater. Today 9:28–35CrossRefGoogle Scholar
  3. 3.
    Rao CNR, Deepak FL, Gundiah G, Govindaraj A (2003) Inorganic nanowires. Progr. Solid State Chem. 31:5–147CrossRefGoogle Scholar
  4. 4.
    Wang ZL (2003) Nanowires and Nanobelts. Kluwer, New YorkCrossRefGoogle Scholar
  5. 5.
    Li Y, Qian F, Xiang J, Lieber CM (2006) Nanowire electronic and optoelectronic devices. Mater. Today 9:18–27CrossRefGoogle Scholar
  6. 6.
    Zhang DH, Wang YY (2006) Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Mater. Sci. Eng. B 134:9–19CrossRefGoogle Scholar
  7. 7.
    Samuelson L, Thelander C, Björk MT, Borgström, M (2004) Semiconductor nanowires for 0D and 1D physics and applications. Physica E 25:313–318ADSCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Buttner CC, Zacharias M (2006) Retarded oxidation of Si nanowires. Appl. Phys. Lett. 89:263106.1–263106.3CrossRefGoogle Scholar
  10. 10.
    Wang N, Tang YH, Zhang YF, Lee CS, Lee ST (1998) Nucleation and growth of Si nanowires from silicon oxide. Phys. Rev. B 58:R16024–R16026ADSCrossRefGoogle Scholar
  11. 11.
    Hasunuma R, Komeda T, Mukaida H, Tokumoto H (1997) Formation of Si nanowire by atomic manipulation with a high temperature scanning tunneling microscope. J. Vac. Sci. Technol. B 15:1437–1441CrossRefGoogle Scholar
  12. 12.
    Rougemaille N, Schmid AK (2006) Self-organization and magnetic domain microstructure of Fe nanowire arrays. J. Appl. Phys. 99:08S502–08S504CrossRefGoogle Scholar
  13. 13.
    Oon CH, Khong SH, Boothroyd CB, Thong JT (2006) Characteristics of single metallic nanowire growth via a field-emission induced process. J. Appl. Phys. 99:064309–064320ADSCrossRefGoogle Scholar
  14. 14.
    Wu Y, Xiang J, Yang C, Lu W, Lieber CM (2004) Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430:61–65PubMedADSCrossRefGoogle Scholar
  15. 15.
    Cha SN, Jang JE, Choi Y (2006) High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes. Appl. Phys. Lett. 89:63102–63104CrossRefGoogle Scholar
  16. 16.
    Sanghyun J, Kangho L, Janes DB (2005) Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics. Nano Lett. 5:2281–2286CrossRefGoogle Scholar
  17. 17.
    Wang X, Sun XY (2006) Fabrication of GaN nanowire arrays by confined epitaxy. Appl. Phys. Lett. 89:233115–233117ADSCrossRefGoogle Scholar
  18. 18.
    Motayed A, He MQ (2006) Realization of reliable GaN nanowire transistors utilizing dielectrophoretic alignment technique. J. Appl. Phys. 100:114310–114318ADSCrossRefGoogle Scholar
  19. 19.
    Yin LW, Bando Y, Zhu YC (2004) Synthesis of InN/InP core/sheath nanowires. Appl. Phys. Lett. 84:1546–1548ADSCrossRefGoogle Scholar
  20. 20.
    Heo YW, Norton DP, Tien LC, Kwon Y, Kang BS, Ren F, Pearton SJ, LaRoche JR (2004) ZnO nanowire growth and devices. Mater. Sci. Eng.: R Rep. 47:1–47CrossRefGoogle Scholar
  21. 21.
    Ren S, Bai YF, Chen J (2007) Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation. Mater. Lett. 61:666–670CrossRefGoogle Scholar
  22. 22.
    Liang C, Towe E, Kuball M (2006) Opto-electronic simulation of GaN nanowire lasers GaN, AlN, InN and related materials. Mater. Res. Soc. Symp. Proc. 892:225–230Google Scholar
  23. 23.
    Magdas DA, Cremades A (2006) Three dimensional nanowire networks and complex nanostructures of indium oxide. J. Appl. Phys. 100:094320–094324ADSCrossRefGoogle Scholar
  24. 24.
    Vaddiraju S, Mohite A, Chin A (2005) Mechanisms of 1D crystal growth in reactive vapor transport: Indium nitride nanowires. Nano Lett. 5:1625–1631PubMedADSCrossRefGoogle Scholar
  25. 25.
    Tao T, Song H, Wu J (2004) Synthesis and characterization of single-crystal indium nitride nanowires. J. Mater. Res. 19:423–426ADSCrossRefGoogle Scholar
  26. 26.
    Chang CY, Chi GC, Wang WM (2006) Electrical transport properties of single GaN and InN nanowires. J. Electron. Mater. 35:738–743ADSCrossRefGoogle Scholar
  27. 27.
    Yang J, Liu TW, Hsu CW (2006) Controlled growth of aluminium nitride nanorod arrays via chemical vapour deposition. Nanotechnology 17:S321–S326ADSCrossRefGoogle Scholar
  28. 28.
    Li ZJ, Shen ZQ, Wang Fu (2006) Arc-discharge synthesis and microstructure characterization of AlN nanowires. J. Mater. Sci. Technol. 22:113–116Google Scholar
  29. 29.
    Mingo N (2003) Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68:113308–113310ADSCrossRefGoogle Scholar
  30. 30.
    Wang N, Zhang YF, Tang YH, Lee CS, Lee ST (1998) SiO2-enhanced synthesis of Si nanowires by laser ablation. Appl. Phys. Lett. 73:3902–3904ADSCrossRefGoogle Scholar
  31. 31.
    Wang ZY, Hu J, Yu MF (2006) One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Appl. Phys. Lett. 89:263119–263121ADSCrossRefGoogle Scholar
  32. 32.
    Park JM, Kim SJ, Kim PG, Yoon DJ, Hansen G, DeVries KL (2007) Self-sensing and actuation of CNF and Ni nanowire/polymer composites using electro-micromechanical test. Proc. SPIE 6463:64630–64634CrossRefGoogle Scholar
  33. 33.
    Salfi J, Philipose U, deSousa CF, Aouba S, Ruda HE (2006) Electrical properties of Ohmic contacts to ZnSe nanowires and their application to nanowire-based photodetection. Appl. Phys. Lett. 89:261112–261114ADSCrossRefGoogle Scholar
  34. 34.
    Tutuc E, Chu JO, Ott JA, Guha S (2006) Doping of germanium nanowires grown in presence of PH3. Appl. Phys. Lett. 89:263101–263103ADSCrossRefGoogle Scholar
  35. 35.
    Chen YJ, Chen XD, Li BJ, Yu DS, He ZQ, Li GJ, Zhang MQ (2006) Optical properties of synthesized organic nanowires. Appl. Phys. Lett. 89:241121–241123ADSCrossRefGoogle Scholar
  36. 36.
    Feng P, Zhang JY, Li QH, Wang TH (2006) Individual-Ga2O3 nanowires as solar-blind photodetectors. Appl. Phys. Lett. 88:153107–153109ADSCrossRefGoogle Scholar
  37. 37.
    He MQ, Mohammad SN (2006) Novel chemical-vapor deposition technique for the synthesis of high-quality single-crystal nanowires and nanotubes. J. Chem. Phys. 124:064714–064720ADSCrossRefGoogle Scholar
  38. 38.
    Xiang J, Lu W, Hu YJ, Wu Y, Yan H, Lieber CM (2006) Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441:489–493PubMedADSCrossRefGoogle Scholar
  39. 39.
    Zhong ZH, Wang DL, Cui Y, Bockrath MW, Lieber CM (2003) Nanowire Crossbar arrays as address decoders for integrated nanosystems. Science 302:1377–1379PubMedADSCrossRefGoogle Scholar
  40. 40.
    Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292PubMedADSCrossRefGoogle Scholar
  41. 41.
    Huber CA, Huber TE, Sadoqi M, Lubin JA, Manalis S, Prater CB (1994) Nanowire array composites. Science 263:800–802PubMedADSCrossRefGoogle Scholar
  42. 42.
    Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899PubMedADSCrossRefGoogle Scholar
  43. 43.
    Hong BH, Bae SC, Lee CW, Jeong SM, Kim KS (2001) Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294:348–351PubMedADSCrossRefGoogle Scholar
  44. 44.
    Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246PubMedADSCrossRefGoogle Scholar
  45. 45.
    Ruff M, Mitlehner H, Helbig R (1994) SiC devices: Physics and numerical simulation. IEEE Trans. Electron. Devices 41:1040–1054ADSCrossRefGoogle Scholar
  46. 46.
    Morkoc H, Strite S, Gao GB, Lin ME, Sverdlov B, Burns M (1994) Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76:1363–1398ADSCrossRefGoogle Scholar
  47. 47.
    Cicero G, Catellani A, Galli G (2004) Atomic control of water interaction with biocompatible surfaces: The case of SiC(001). Phys. Rev. Lett. 93:016102–016105PubMedADSCrossRefGoogle Scholar
  48. 48.
    Harris GL (1995) Properties of Silicon Carbide. INSPEC, the Institution of Electrical Engineers, LondonGoogle Scholar
  49. 49.
    Zetterling CM (2002) Process Technology for Silicon Carbide Devices. EMIS Processing Series, no. 2. INSPEC, IEE, UKGoogle Scholar
  50. 50.
    Casady JB, Johnson RW (1996) States of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid State Electron. 39:1409–1422ADSCrossRefGoogle Scholar
  51. 51.
    Baliga BJ (1996) Power Semiconductor Devices. PWS-Kent, Boston, MAGoogle Scholar
  52. 52.
    Treu M, Rupp R, Blaschitz P (2006) Commercial SiC device processing: Status and requirements with respect to SiC based power devices. Superlattice Microstruct. 40:380–387ADSCrossRefGoogle Scholar
  53. 53.
    Sha JJ, Park JS, Hinoki T, Kohyama A (2007) Bend stress relaxation of advanced SiC-based fibers and its prediction to tensile creep. Mech. Mater. 39:175–182CrossRefGoogle Scholar
  54. 54.
    Mehregany M, Zorman CA (1999) SiC MEMS: Opportunities and challenges for applications in harsh environments. Thin Solid Films 355–356:518–524CrossRefGoogle Scholar
  55. 55.
    Djenkal D, Goeuriot D, Thevenot F (2000) SiC-reinforcement of an Al2O3–γ AlON composite. J. Eur. Ceram. Soc. 20:2585–2590CrossRefGoogle Scholar
  56. 56.
    Müller G, Krötz G, Niemann E (1994) SiC for sensors and high-temperature electronics. Sens. Actuators A: Phys. 43:259–268CrossRefGoogle Scholar
  57. 57.
    Dimitrijev S, Jamet P (2003) Advances in SiC power MOSFET technology. Microelectron. Reliab. 43:225–233CrossRefGoogle Scholar
  58. 58.
    Iijima S (1993) Helical microtubules of graphitic carbon. Nature 354:56–58ADSCrossRefGoogle Scholar
  59. 59.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605ADSCrossRefGoogle Scholar
  60. 60.
    Zhou D, Seraphin S (1994) Production of silicon carbide whiskers from carbon nanoclusters. Chem. Phys. Lett. 222:233–238ADSCrossRefGoogle Scholar
  61. 61.
    Dai HJ, Wong EW, Lu YZ, Fan SS, Lieber CM (1995) Synthesis and characterization of carbide nanorods. Nature 375:769–772ADSCrossRefGoogle Scholar
  62. 62.
    Han WQ, Fan SS, Li QQ, Liang WJ, Gu BL, Yu DP (1997) Continuous synthesis and characterization of silicon carbide nanorods. Chem. Phys. Lett. 265:374–378ADSCrossRefGoogle Scholar
  63. 63.
    Tang CC, Fan SS, Dang HY, Zhao JH, Zhang C, Li P, Gu A (2000) Growth of SiC nanorods prepared by carbon nanotubes-confined reaction. J. Cryst. Growth 210:595–599ADSCrossRefGoogle Scholar
  64. 64.
    Muñoz E, Dalton AB, Collins S, Zakhidov AA (2002) Synthesis of SiC nanorods from sheets of single-walled carbon nanotubes. Chem. Phys. Lett. 395:397–402CrossRefGoogle Scholar
  65. 65.
    Seeger T, Redlich PK, Rühle M (2000) Synthesis of nanometer-sized SiC whiskers in the arc-discharge. Adv. Mater. 12:279–282CrossRefGoogle Scholar
  66. 66.
    Li YB, Xie SS, Zou XP, Tang DS, Liu ZQ, Zhou WY, Wang G (2001) Large-scale synthesis of β-SiC nanorods in the arc-discharge. J. Cryst. Growth 223:125–128ADSCrossRefGoogle Scholar
  67. 67.
    Thess A, Lee R, Nikolaev P, Dai H, Petit P (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487PubMedADSCrossRefGoogle Scholar
  68. 68.
    Liu J, Rinzler AG, Dai H, Hafner JH, Bradley PK, Boul PJ, Lu A (1998) Fullerene pipes. Science 280:1253–1255PubMedADSCrossRefGoogle Scholar
  69. 69.
    Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Belllo I, Lee ST (1998) Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 72:1835–1837ADSCrossRefGoogle Scholar
  70. 70.
    Tang YH, Zhang YF, Peng HY, Wang N, Lee CS, Lee ST (1999) Si nanowires synthesized by laser ablation of mixed SiC and SiO2 powders. Chem. Phys. Lett. 314:16–20ADSCrossRefGoogle Scholar
  71. 71.
    Shi WS, Zheng YF, Peng HY, Wang N, Lee CS, Lee ST (2000) Laser Ablation synthesis and optical characterization of silicon carbide nanowires. J. Am. Ceram. Soc. 83:3228–3230CrossRefGoogle Scholar
  72. 72.
    Meng GW, Cui Z, Zhang LD, Phillipp F (2000) Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles. J. Cryst. Growth 209:801–806ADSCrossRefGoogle Scholar
  73. 73.
    Liang CH, Meng GW, Zhang LD, Wu YC, Cui Z (2000) Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles. Chem. Phys. Lett. 329:323–328ADSCrossRefGoogle Scholar
  74. 74.
    Xu WJ, Xu Y, Sun XY, Liu YQ, Wu D, Sun YH (2006) Fabrication of tower like β-like by sol-gel and carbothermal reduction processing. New Carbon Mater. 21:167–170Google Scholar
  75. 75.
    Yang W, Araki H, Thaveethavorn S, Suzuki H, Nada T (2005) In situ synthesis and characterization of pure SiC nanowires on silicon wafer. Appl. Surf. Sci. 241:236–240ADSCrossRefGoogle Scholar
  76. 76.
    Yang W, Araki H, Hu QL, Ishikawa N, Suzuki S, Noda T (2004) In situ growth of SiC nanowires on RS-SiC substrates. J. Cryst. Growth 264:278–283ADSCrossRefGoogle Scholar
  77. 77.
    Ying YC, Gu Y, Li ZF, Gu HZ, Cheng LY, Qia YT (2004) A simple route to nanocrystalline silicon carbide. J. Solid State Chem. 177:4163–4166ADSCrossRefGoogle Scholar
  78. 78.
    Mamails AG, Vogtlander LOG, Markopoulos A (2004) Nanotechnology and nanostructured materials: Trends in carbon nanotubes. Precis. Eng. 28:16–30CrossRefGoogle Scholar
  79. 79.
    Zhang YF, Gamo MN, Xiao CY, Ando T (2002) Synthesis of 3C-SiC nanowhiskers and emission of visible photoluminescence. J. Appl. Phys. 91:6066–6070ADSCrossRefGoogle Scholar
  80. 80.
    Zhou XT, Wang N, Lai HL, Peng Y, Bello I, Lee ST (1999) β-SiC nanorods synthesized by hot filament chemical vapor deposition. Appl. Phys. Lett. 74:3942–3944ADSCrossRefGoogle Scholar
  81. 81.
    Chio HJ, Seong HK, Lee JC, Sung YM (2004) Growth and modulation of silicon carbide nanowires. J. Cryst. Growth 269:472–478ADSCrossRefGoogle Scholar
  82. 82.
    Ho GW, Wong SW, Kang DJ, Welland ME (2004) Three-dimensional crystalline SiC nanowire flowers. Nanotechnology 15:996–999ADSCrossRefGoogle Scholar
  83. 83.
    Li HJ, Li ZJ, Meng AL, Li KZ, Zhang XN, Xu YP (2003) SiC nanowire networks. J. Alloys Compd. 352:279–282CrossRefGoogle Scholar
  84. 84.
    Zhang YJ, Wang NL, He RR, Chen XH, Zhu J (2001) Synthesis of SiC nanorods using floating catalyst. Solid State Commun. 118:595–598ADSCrossRefGoogle Scholar
  85. 85.
    Zhou WM, Yang B, Yang ZX, Zhu F, Yan LJ, Zhang YF (2006) Large-scale synthesis and characterization of SiC nanowires by high-frequency induction heating. Appl. Surf. Sci. 252:5143–5148ADSCrossRefGoogle Scholar
  86. 86.
    Zhou WM, Yang ZX, Zhu F, Zhang YF (2006) SiC∕SiO2 nanocables and nanosprings synthesized by catalyst-free method. Physica E 31:9–12ADSCrossRefGoogle Scholar
  87. 87.
    Zhang HF, Wang CM, Wang SL (2002) Helical crystalline SiC∕SiO2 core–shell nanowires. Nano Lett. 2:941–944ADSCrossRefGoogle Scholar
  88. 88.
    Kong XY, Wang ZL (2003) Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3:1625–1631ADSCrossRefGoogle Scholar
  89. 89.
    Shen GZ, Bando YS, Ye CH, Liu BD, Golberg D (2006) Synthesis, characterization and field-emission properties of bamboo-like β-SiC nanowires. Nanotechnology 17:3468–3472PubMedADSCrossRefGoogle Scholar
  90. 90.
    Shen GZ, Bando YS, Golberg D (2006) Self-assembled hierarchical single-crystalline β-SiC nanoarchitectures. Crystal growth & design 7:35–38CrossRefGoogle Scholar
  91. 91.
    Li ZJ, Zhang JL, Meng A, Guo JZ (2006) Large-area highly oriented SiC nanowires: Synthesis, Raman, and photoluminescence properties. J. Phys. Chem. B 110:22382–22386PubMedCrossRefGoogle Scholar
  92. 92.
    Pan ZW, Lai HL, Au CK, Duan XF, Zhou WY, Shi WS, Wang N, Lee CS, Wong NB, Lee ST, Xie SS (2000) Oriented silicon carbide nanowires: Synthesis and emission properties. Adv. Mater. 12:1186–1190CrossRefGoogle Scholar
  93. 93.
    Kim HY, Park J, Yang H (2003) Direct synthesis and aligned silicon carbide nanowires from the silicon substrates. Chem. Commun. 37:256–257Google Scholar
  94. 94.
    Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BK (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J. Am. Chem. Soc. 124:14464–14472PubMedCrossRefGoogle Scholar
  95. 95.
    Palen EB, Ruemmeli MH, Gemming T, Knupfer M, Biedermann K, Leonhardt A, Pichler T (2005) Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J. Appl. Phys. 97:056102–056104ADSCrossRefGoogle Scholar
  96. 96.
    Taguchi T, Igawa N, Yamamoto H (2004) Synthesis of silicon carbide nanotubes. J. Am. Ceram. Soc. 88:459–461CrossRefGoogle Scholar
  97. 97.
    Lauhon LJ, Gudiksen MS, Lieber CM (2004) Semiconductor nanowire heterostructures. Philos. Trans. R. Soc. Lond. A 362:1247–1260ADSCrossRefGoogle Scholar
  98. 98.
    Lu W, Lieber CM (2006) Semiconductor nanowires. J. Phys. D: Appl. Phys. 39:R387–R406ADSCrossRefGoogle Scholar
  99. 99.
    Zhang Y, Suenage K, Colliex C, Iijima S (1998) Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281:973–975PubMedADSCrossRefGoogle Scholar
  100. 100.
    Zhang Y, Ichihashi T, Landree E, Nihey F, Iijima S (1999) Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 285:1719–1722PubMedCrossRefGoogle Scholar
  101. 101.
    Li YB, Bando YS, Golberg D (2004) SiC–SiO2–C coaxial nanocables and chains of carbon nanotube–SiC heterojunctions. Adv. Mater. 16:93–96CrossRefGoogle Scholar
  102. 102.
    Tang CC, Bando YS, Sato TD, Kurashima KJ (2002) Uniform boron nitride coatings on silicon carbide nanowires. Adv. Mater. 14:1406–1409CrossRefGoogle Scholar
  103. 103.
    Han WQ, Redlich P, Ernst F, Ruhle M (1999) Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates. J. Appl. Lett. 75:1875–1877ADSCrossRefGoogle Scholar
  104. 104.
    Tang CC, Bando YS, Sato TD, Kurashima KJ (2002) SiC and its bicrystalline nanowires with uniform BN coatings. Appl. Phys. Lett. 80:4641–4643ADSCrossRefGoogle Scholar
  105. 105.
    Wenger KS, Cornu D, Chassagneux F, Ferro G, Epicier T, Miele P (2002) Direct synthesis of β-SiC and h-BN coated β-SiC nanowires. Solid State Commun. 124:157–161CrossRefGoogle Scholar
  106. 106.
    Tang CC, Bando YS, Sato TD, Kurashima KJ (2002) Comparative studies on BN-coating on SiC and Si3N4 nanowires. J. Mater. Chem. 12:1910–1913CrossRefGoogle Scholar
  107. 107.
    Pokropivny V, Pokropivny A, Lohmus A, Lohmus R, Kovrygin S, Sylenko P, Partch R, Prilutskii E (2006) Extremely high-frequency piezoelectroacoustic transducer based on BN-tube/SiC-whiskers rope. Physica E 37:283–286ADSCrossRefGoogle Scholar
  108. 108.
    Zhu YC, Bando YS, Xue DF, Xu FF, Golberg D (2003) Insulating tubular BN sheathing on semiconducting nanowires. J. Am. Chem. Soc. 125:14226–14227PubMedCrossRefGoogle Scholar
  109. 109.
    Hu JQ, Bando Y, Zhan JH, Golberg D (2004) Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes). Appl. Phys. Lett. 85:2932–2934ADSCrossRefGoogle Scholar
  110. 110.
    Tak YJ, Ryu YH, Yong KJ (2005) Atomically abrupt heteronanojunction of ZnO nanorods on SiC nanowires prepared by a two-step. Nanotechnology 16:1712–1716ADSCrossRefGoogle Scholar
  111. 111.
    Tak YG, Yong KJ (2005) ZrO2-coated SiC nanowires prepared by plasma-enhanced atomic layer chemical vapor deposition. Surf. Rev. Lett. 12:215–219CrossRefGoogle Scholar
  112. 112.
    Lalonde AD, Norton MG, McIlroy DN, Zhang DQ (2005) Metal coatings on SiC nanowires by plasma-enhanced chemical vapor deposition. J. Mater. Res. 20:549–553ADSCrossRefGoogle Scholar
  113. 113.
    Min BD, Lee JS, Cho KG, Hwang JW, Kim H, Sung MY, Kim S, Park J, Seo HW, Bae SY, Lee MS, Park SO, Moon JT (2003) Semiconductor nanowires surrounded by cylindrical Al2O3 shells. J. Electron. Mater. 32:1344–1348ADSCrossRefGoogle Scholar
  114. 114.
    Zhou J, Liu J, Yang R, Lao CS, Gao PX, Tummala R, Xu NS, Wang ZL (2006) SiC-shell nanostructures fabricated by replicating ZnO nano-objects: A technique for producing hollow nanostructures of desired shape. Small 2:1344–1347PubMedCrossRefGoogle Scholar
  115. 115.
    Wu ZS, Deng SZ, Xu NS, Chen J, Zhou J, Chen J (2002) Needle-shaped silicon carbide nanowires: Synthesis and filed electron emission properties. 80:3829–3831Google Scholar
  116. 116.
    Wong KW, Zhou XT, Au CK, Lai HL, Lee CS, Lee ST (1999) Filed-emission characteristics of SiC nanowires prepared by chemical-vapor deposition. Appl. Phys. Lett. 75:2918–2920ADSCrossRefGoogle Scholar
  117. 117.
    Lo HC, Hwang JS, Chen KH, Hsu CH, Chen CF, Chen LC (2003) SiC-capped nanotip arrays for field emission with ultralow turn-on filed. Appl. Phys. Lett. 83:1420–1422ADSCrossRefGoogle Scholar
  118. 118.
    Feng DH, Jia TQ, Li XX, Xu ZZ, Chen J, Deng SZ (2003) Catalytic synthesis and photoluminescence of needle-shaped 3C-SiC nanowires. Solid State Commun. 128:295–297ADSCrossRefGoogle Scholar
  119. 119.
    Deng SZ, Li ZB, Wang WL, Xu NS, Zhou J, Zheng XG, Xu HT, Chen J, She JC (2006) Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic surface. Appl. Phys. Lett. 89:023118–023200ADSCrossRefGoogle Scholar
  120. 120.
    Zhou WM, Wu YJ, Kong ESW, Zhu F, Hou ZY, Zhang YF (2006) Field emission from nonaligned SiC nanowires. Appl. Surf. Sci. 253:2056–2058ADSCrossRefGoogle Scholar
  121. 121.
    Fowler RH, Nordheim LW (1928) Electron beams formed by photoelectric field emission. Proc. R. Soc. Lond. A 119:173–181ADSCrossRefGoogle Scholar
  122. 122.
    Tang CC, Bando Y (2003) Effect of BN coatings on oxidation resistance and field emission of SiC nanowires. Appl. Phys. Lett. 83:659–661ADSCrossRefGoogle Scholar
  123. 123.
    Ryu YW, Tak YJ, Yong KJ (2005) Direct growth of core–shell SiC–SiO2 nanowires and field emission characteristics. Nanotechnology 16:S370–S374ADSCrossRefGoogle Scholar
  124. 124.
    Ryu YH, Park BT, Song YH, Yong K (2004) Carbon-coated SiC nanowires: Direct synthesis from Si and filed emission characteristics. J. Cryst. Growth 271:99–104ADSCrossRefGoogle Scholar
  125. 125.
    Liu XM, Yao KF (2005) Large-scale synthesis and photoluminescence properties of SiC∕SiOx nanocables. Nanotechnology 16:2932–2935ADSCrossRefGoogle Scholar
  126. 126.
    Li YB, Dorozhkin PS, Bando YS, Golberg D (2005) Controllable modification of SiC nanowires encapsulated in BN nanotubes. Adv. Mater. 17:545–549CrossRefGoogle Scholar
  127. 127.
    Zhou WM, Fang F, Hou ZY, Yan LJ, Zhang YF (2006) Field-effect transistor based on β-SiC nanowire. IEEE Electron. Device Lett. 27:463–465ADSCrossRefGoogle Scholar
  128. 128.
    Avouris P, Martel R, Derycke V, Appenzeller J (2002) Carbon nanotube transistors and logic circuits. Phys. B 323:6–14ADSCrossRefGoogle Scholar
  129. 129.
    Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Nature 277:1971–1975Google Scholar
  130. 130.
    Wang ZL, Dai ZR, Gao RP, Bai ZG, Gole JL (2000) Side-by-side silicon carbide–silica biaxial nanowires: Synthesis, structure, and mechanical properties. Appl. Phys. Lett. 77: 3349–3351ADSCrossRefGoogle Scholar
  131. 131.
    Wang ZL, Dai ZR, Gao RP, Bai ZG, Gole JL (2002) Measuring the Young’s modulus of solid nanowires by in situ TEM. J. Electron. Microsc. 51(Suppl.):S79–S85CrossRefGoogle Scholar
  132. 132.
    Yang W, Araki H, Kohyama A, Katoh Y, Hu Q, Suzuki H, Noda T (2004) Tyranno-SA/SiC composite with SiC nanowires in the matrix by CVI process. J. Nucl. Mater. 329–333: 539–543CrossRefGoogle Scholar
  133. 133.
    Yang W, Araki H, Kohyama A, Thaveethavorn S, Suzuki H, Noda T (2004) Fabrication in-situ SiC nanowires/SiC matrix composite by chemical vapour infiltration process. Mater. Lett. 58:3145–3148CrossRefGoogle Scholar
  134. 134.
    Yang W, Araki H, Tang CC, Thaveethavorn S, Kohyama A, Suzuki H, Noda T (2005) Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv. Mater. 17:1519–1523CrossRefGoogle Scholar
  135. 135.
    Vivekchand SRC, Ramamurty U, Rao CNR (2006) Mechanical properties of inorganic nanowire reinforced polymer–matrix composites. Nanotechnology 17:S344–S350ADSCrossRefGoogle Scholar
  136. 136.
    Zhou WM, Yan LJ, Wang Y, Zhang YF (2006) SiC nanowires: A photocatalytic nanomaterial. Appl. Phys. Lett. 89:013105–013107ADSCrossRefGoogle Scholar
  137. 137.
  138. 138.
    Remškar M (2004) Inorganic nanotubes. Adv. Mater. 16:1497–1504CrossRefGoogle Scholar
  139. 139.
    Tenne R, Rao CNR (2004) Inorganic nanotubes. Philos. Trans. R. Soc. Lond. A 362:2099–2125ADSCrossRefGoogle Scholar
  140. 140.
    Ma RZ, Golberg D, Bando YS, Sasaki T (2004) Philos. Trans. R. Soc. Lond. A 362:2161–2186ADSCrossRefGoogle Scholar
  141. 141.
    Mpourmpakis G, Froudakis GE (2006) SiC nanotubes: A novel material for hydrogen storage. Nano Lett. 6:1851–1853CrossRefGoogle Scholar
  142. 142.
    Yan BH, Zhou G, Duan WH, Wu J, Gu BL (2006) Uniaxial-stress effects on electronic properties of silicon carbide nanowires. Appl. Phys. Lett. 89:023104–023106ADSCrossRefGoogle Scholar
  143. 143.
    Rurali R (2005) Electronic and structural properties of silicon carbide nanowire. Phys. Rev. Lett. 71:205405.1–205405.7ADSGoogle Scholar
  144. 144.
    Kim TY, Han SS, Lee HM (2004) Nanomechanical behavior of β-SiC nanowire in tension: Molecular dynamic simulations. Mater. Trans. 45:1442–1449CrossRefGoogle Scholar
  145. 145.
    Moon WH, Ham JK, Hwang HJ (2003) Mechanical properties of SiC nanotubes. Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, vol. 3, pp 158–161Google Scholar
  146. 146.
    Cicero G, Catellani A, Galli G (2004) Atomic control of water interaction with biocompatible surfaces: The case of SiC(001). Phys. Rev. Lett. 93:016102.1–016102.4ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Weimin Zhou
    • 1
  • Yafei Zhang
    • 2
  • Xiaoming Niu
    • 1
  • Guoquan Min
    • 1
  1. 1.Shanghai Nanotechnology Promotion CenterShanghaiChina
  2. 2.Research Institute of Micro/Nano Science and technologyShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations