Skip to main content

One-Dimensional SiC Nanostructures: Synthesis and Properties

  • Chapter
One-Dimensional Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 3))

Abstract

SiC with unique properties, such as wide band gap, excellent thermal conductivity, chemical inertness, high electron mobility, and biocompatibility, promises well for applications in microelectronics and optoelectronics, as well as nanocomposites. The chapter reviews the recent progress on one-dimensional SiC nanostructures in both experimental and theoretical level, including synthesis methods and some properties (field emission, optical, electronic transport, mechanical, photocatalyst, and hydrogen storage) of SiC nanowires. Importantly, some novel results on SiC nanowires were elucidated clearly in our laboratory. Personal remarks end with some views on development and application of one-dimensional SiC nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu W, Lieber CM (2006) Semiconductor nanowires. J. Phys. D: Appl. Phys. 39:R387–R406

    Article  ADS  CAS  Google Scholar 

  2. Thelander C, Agarwal P (2006) Nanowire-based one-dimensional electronics. Mater. Today 9:28–35

    Article  CAS  Google Scholar 

  3. Rao CNR, Deepak FL, Gundiah G, Govindaraj A (2003) Inorganic nanowires. Progr. Solid State Chem. 31:5–147

    Article  CAS  Google Scholar 

  4. Wang ZL (2003) Nanowires and Nanobelts. Kluwer, New York

    Book  Google Scholar 

  5. Li Y, Qian F, Xiang J, Lieber CM (2006) Nanowire electronic and optoelectronic devices. Mater. Today 9:18–27

    Article  CAS  Google Scholar 

  6. Zhang DH, Wang YY (2006) Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Mater. Sci. Eng. B 134:9–19

    Article  CAS  Google Scholar 

  7. Samuelson L, Thelander C, Björk MT, Borgström, M (2004) Semiconductor nanowires for 0D and 1D physics and applications. Physica E 25:313–318

    Article  ADS  CAS  Google Scholar 

  8. http://www.lib.demokritos.gr/InTheNews/emerging0204.htm

  9. Buttner CC, Zacharias M (2006) Retarded oxidation of Si nanowires. Appl. Phys. Lett. 89:263106.1–263106.3

    Article  CAS  Google Scholar 

  10. Wang N, Tang YH, Zhang YF, Lee CS, Lee ST (1998) Nucleation and growth of Si nanowires from silicon oxide. Phys. Rev. B 58:R16024–R16026

    Article  ADS  CAS  Google Scholar 

  11. Hasunuma R, Komeda T, Mukaida H, Tokumoto H (1997) Formation of Si nanowire by atomic manipulation with a high temperature scanning tunneling microscope. J. Vac. Sci. Technol. B 15:1437–1441

    Article  CAS  Google Scholar 

  12. Rougemaille N, Schmid AK (2006) Self-organization and magnetic domain microstructure of Fe nanowire arrays. J. Appl. Phys. 99:08S502–08S504

    Article  CAS  Google Scholar 

  13. Oon CH, Khong SH, Boothroyd CB, Thong JT (2006) Characteristics of single metallic nanowire growth via a field-emission induced process. J. Appl. Phys. 99:064309–064320

    Article  ADS  CAS  Google Scholar 

  14. Wu Y, Xiang J, Yang C, Lu W, Lieber CM (2004) Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430:61–65

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Cha SN, Jang JE, Choi Y (2006) High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes. Appl. Phys. Lett. 89:63102–63104

    Article  CAS  Google Scholar 

  16. Sanghyun J, Kangho L, Janes DB (2005) Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics. Nano Lett. 5:2281–2286

    Article  CAS  Google Scholar 

  17. Wang X, Sun XY (2006) Fabrication of GaN nanowire arrays by confined epitaxy. Appl. Phys. Lett. 89:233115–233117

    Article  ADS  CAS  Google Scholar 

  18. Motayed A, He MQ (2006) Realization of reliable GaN nanowire transistors utilizing dielectrophoretic alignment technique. J. Appl. Phys. 100:114310–114318

    Article  ADS  CAS  Google Scholar 

  19. Yin LW, Bando Y, Zhu YC (2004) Synthesis of InN/InP core/sheath nanowires. Appl. Phys. Lett. 84:1546–1548

    Article  ADS  CAS  Google Scholar 

  20. Heo YW, Norton DP, Tien LC, Kwon Y, Kang BS, Ren F, Pearton SJ, LaRoche JR (2004) ZnO nanowire growth and devices. Mater. Sci. Eng.: R Rep. 47:1–47

    Article  CAS  Google Scholar 

  21. Ren S, Bai YF, Chen J (2007) Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation. Mater. Lett. 61:666–670

    Article  CAS  Google Scholar 

  22. Liang C, Towe E, Kuball M (2006) Opto-electronic simulation of GaN nanowire lasers GaN, AlN, InN and related materials. Mater. Res. Soc. Symp. Proc. 892:225–230

    Google Scholar 

  23. Magdas DA, Cremades A (2006) Three dimensional nanowire networks and complex nanostructures of indium oxide. J. Appl. Phys. 100:094320–094324

    Article  ADS  CAS  Google Scholar 

  24. Vaddiraju S, Mohite A, Chin A (2005) Mechanisms of 1D crystal growth in reactive vapor transport: Indium nitride nanowires. Nano Lett. 5:1625–1631

    Article  PubMed  ADS  CAS  Google Scholar 

  25. Tao T, Song H, Wu J (2004) Synthesis and characterization of single-crystal indium nitride nanowires. J. Mater. Res. 19:423–426

    Article  ADS  CAS  Google Scholar 

  26. Chang CY, Chi GC, Wang WM (2006) Electrical transport properties of single GaN and InN nanowires. J. Electron. Mater. 35:738–743

    Article  ADS  CAS  Google Scholar 

  27. Yang J, Liu TW, Hsu CW (2006) Controlled growth of aluminium nitride nanorod arrays via chemical vapour deposition. Nanotechnology 17:S321–S326

    Article  ADS  CAS  Google Scholar 

  28. Li ZJ, Shen ZQ, Wang Fu (2006) Arc-discharge synthesis and microstructure characterization of AlN nanowires. J. Mater. Sci. Technol. 22:113–116

    CAS  Google Scholar 

  29. Mingo N (2003) Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68:113308–113310

    Article  ADS  CAS  Google Scholar 

  30. Wang N, Zhang YF, Tang YH, Lee CS, Lee ST (1998) SiO2-enhanced synthesis of Si nanowires by laser ablation. Appl. Phys. Lett. 73:3902–3904

    Article  ADS  CAS  Google Scholar 

  31. Wang ZY, Hu J, Yu MF (2006) One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Appl. Phys. Lett. 89:263119–263121

    Article  ADS  CAS  Google Scholar 

  32. Park JM, Kim SJ, Kim PG, Yoon DJ, Hansen G, DeVries KL (2007) Self-sensing and actuation of CNF and Ni nanowire/polymer composites using electro-micromechanical test. Proc. SPIE 6463:64630–64634

    Article  CAS  Google Scholar 

  33. Salfi J, Philipose U, deSousa CF, Aouba S, Ruda HE (2006) Electrical properties of Ohmic contacts to ZnSe nanowires and their application to nanowire-based photodetection. Appl. Phys. Lett. 89:261112–261114

    Article  ADS  CAS  Google Scholar 

  34. Tutuc E, Chu JO, Ott JA, Guha S (2006) Doping of germanium nanowires grown in presence of PH3. Appl. Phys. Lett. 89:263101–263103

    Article  ADS  CAS  Google Scholar 

  35. Chen YJ, Chen XD, Li BJ, Yu DS, He ZQ, Li GJ, Zhang MQ (2006) Optical properties of synthesized organic nanowires. Appl. Phys. Lett. 89:241121–241123

    Article  ADS  CAS  Google Scholar 

  36. Feng P, Zhang JY, Li QH, Wang TH (2006) Individual-Ga2O3 nanowires as solar-blind photodetectors. Appl. Phys. Lett. 88:153107–153109

    Article  ADS  CAS  Google Scholar 

  37. He MQ, Mohammad SN (2006) Novel chemical-vapor deposition technique for the synthesis of high-quality single-crystal nanowires and nanotubes. J. Chem. Phys. 124:064714–064720

    Article  ADS  CAS  Google Scholar 

  38. Xiang J, Lu W, Hu YJ, Wu Y, Yan H, Lieber CM (2006) Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441:489–493

    Article  PubMed  ADS  CAS  Google Scholar 

  39. Zhong ZH, Wang DL, Cui Y, Bockrath MW, Lieber CM (2003) Nanowire Crossbar arrays as address decoders for integrated nanosystems. Science 302:1377–1379

    Article  PubMed  ADS  CAS  Google Scholar 

  40. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  PubMed  ADS  CAS  Google Scholar 

  41. Huber CA, Huber TE, Sadoqi M, Lubin JA, Manalis S, Prater CB (1994) Nanowire array composites. Science 263:800–802

    Article  PubMed  ADS  CAS  Google Scholar 

  42. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  PubMed  ADS  CAS  Google Scholar 

  43. Hong BH, Bae SC, Lee CW, Jeong SM, Kim KS (2001) Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294:348–351

    Article  PubMed  ADS  CAS  Google Scholar 

  44. Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  PubMed  ADS  CAS  Google Scholar 

  45. Ruff M, Mitlehner H, Helbig R (1994) SiC devices: Physics and numerical simulation. IEEE Trans. Electron. Devices 41:1040–1054

    Article  ADS  CAS  Google Scholar 

  46. Morkoc H, Strite S, Gao GB, Lin ME, Sverdlov B, Burns M (1994) Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76:1363–1398

    Article  ADS  CAS  Google Scholar 

  47. Cicero G, Catellani A, Galli G (2004) Atomic control of water interaction with biocompatible surfaces: The case of SiC(001). Phys. Rev. Lett. 93:016102–016105

    Article  PubMed  ADS  CAS  Google Scholar 

  48. Harris GL (1995) Properties of Silicon Carbide. INSPEC, the Institution of Electrical Engineers, London

    Google Scholar 

  49. Zetterling CM (2002) Process Technology for Silicon Carbide Devices. EMIS Processing Series, no. 2. INSPEC, IEE, UK

    Google Scholar 

  50. Casady JB, Johnson RW (1996) States of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid State Electron. 39:1409–1422

    Article  ADS  Google Scholar 

  51. Baliga BJ (1996) Power Semiconductor Devices. PWS-Kent, Boston, MA

    Google Scholar 

  52. Treu M, Rupp R, Blaschitz P (2006) Commercial SiC device processing: Status and requirements with respect to SiC based power devices. Superlattice Microstruct. 40:380–387

    Article  ADS  CAS  Google Scholar 

  53. Sha JJ, Park JS, Hinoki T, Kohyama A (2007) Bend stress relaxation of advanced SiC-based fibers and its prediction to tensile creep. Mech. Mater. 39:175–182

    Article  Google Scholar 

  54. Mehregany M, Zorman CA (1999) SiC MEMS: Opportunities and challenges for applications in harsh environments. Thin Solid Films 355–356:518–524

    Article  Google Scholar 

  55. Djenkal D, Goeuriot D, Thevenot F (2000) SiC-reinforcement of an Al2O3–γ AlON composite. J. Eur. Ceram. Soc. 20:2585–2590

    Article  CAS  Google Scholar 

  56. Müller G, Krötz G, Niemann E (1994) SiC for sensors and high-temperature electronics. Sens. Actuators A: Phys. 43:259–268

    Article  Google Scholar 

  57. Dimitrijev S, Jamet P (2003) Advances in SiC power MOSFET technology. Microelectron. Reliab. 43:225–233

    Article  CAS  Google Scholar 

  58. Iijima S (1993) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  ADS  Google Scholar 

  59. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  ADS  CAS  Google Scholar 

  60. Zhou D, Seraphin S (1994) Production of silicon carbide whiskers from carbon nanoclusters. Chem. Phys. Lett. 222:233–238

    Article  ADS  CAS  Google Scholar 

  61. Dai HJ, Wong EW, Lu YZ, Fan SS, Lieber CM (1995) Synthesis and characterization of carbide nanorods. Nature 375:769–772

    Article  ADS  CAS  Google Scholar 

  62. Han WQ, Fan SS, Li QQ, Liang WJ, Gu BL, Yu DP (1997) Continuous synthesis and characterization of silicon carbide nanorods. Chem. Phys. Lett. 265:374–378

    Article  ADS  CAS  Google Scholar 

  63. Tang CC, Fan SS, Dang HY, Zhao JH, Zhang C, Li P, Gu A (2000) Growth of SiC nanorods prepared by carbon nanotubes-confined reaction. J. Cryst. Growth 210:595–599

    Article  ADS  CAS  Google Scholar 

  64. Muñoz E, Dalton AB, Collins S, Zakhidov AA (2002) Synthesis of SiC nanorods from sheets of single-walled carbon nanotubes. Chem. Phys. Lett. 395:397–402

    Article  Google Scholar 

  65. Seeger T, Redlich PK, Rühle M (2000) Synthesis of nanometer-sized SiC whiskers in the arc-discharge. Adv. Mater. 12:279–282

    Article  CAS  Google Scholar 

  66. Li YB, Xie SS, Zou XP, Tang DS, Liu ZQ, Zhou WY, Wang G (2001) Large-scale synthesis of β-SiC nanorods in the arc-discharge. J. Cryst. Growth 223:125–128

    Article  ADS  CAS  Google Scholar 

  67. Thess A, Lee R, Nikolaev P, Dai H, Petit P (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  PubMed  ADS  CAS  Google Scholar 

  68. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley PK, Boul PJ, Lu A (1998) Fullerene pipes. Science 280:1253–1255

    Article  PubMed  ADS  CAS  Google Scholar 

  69. Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Belllo I, Lee ST (1998) Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 72:1835–1837

    Article  ADS  CAS  Google Scholar 

  70. Tang YH, Zhang YF, Peng HY, Wang N, Lee CS, Lee ST (1999) Si nanowires synthesized by laser ablation of mixed SiC and SiO2 powders. Chem. Phys. Lett. 314:16–20

    Article  ADS  CAS  Google Scholar 

  71. Shi WS, Zheng YF, Peng HY, Wang N, Lee CS, Lee ST (2000) Laser Ablation synthesis and optical characterization of silicon carbide nanowires. J. Am. Ceram. Soc. 83:3228–3230

    Article  CAS  Google Scholar 

  72. Meng GW, Cui Z, Zhang LD, Phillipp F (2000) Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles. J. Cryst. Growth 209:801–806

    Article  ADS  CAS  Google Scholar 

  73. Liang CH, Meng GW, Zhang LD, Wu YC, Cui Z (2000) Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles. Chem. Phys. Lett. 329:323–328

    Article  ADS  CAS  Google Scholar 

  74. Xu WJ, Xu Y, Sun XY, Liu YQ, Wu D, Sun YH (2006) Fabrication of tower like β-like by sol-gel and carbothermal reduction processing. New Carbon Mater. 21:167–170

    CAS  Google Scholar 

  75. Yang W, Araki H, Thaveethavorn S, Suzuki H, Nada T (2005) In situ synthesis and characterization of pure SiC nanowires on silicon wafer. Appl. Surf. Sci. 241:236–240

    Article  ADS  CAS  Google Scholar 

  76. Yang W, Araki H, Hu QL, Ishikawa N, Suzuki S, Noda T (2004) In situ growth of SiC nanowires on RS-SiC substrates. J. Cryst. Growth 264:278–283

    Article  ADS  CAS  Google Scholar 

  77. Ying YC, Gu Y, Li ZF, Gu HZ, Cheng LY, Qia YT (2004) A simple route to nanocrystalline silicon carbide. J. Solid State Chem. 177:4163–4166

    Article  ADS  CAS  Google Scholar 

  78. Mamails AG, Vogtlander LOG, Markopoulos A (2004) Nanotechnology and nanostructured materials: Trends in carbon nanotubes. Precis. Eng. 28:16–30

    Article  Google Scholar 

  79. Zhang YF, Gamo MN, Xiao CY, Ando T (2002) Synthesis of 3C-SiC nanowhiskers and emission of visible photoluminescence. J. Appl. Phys. 91:6066–6070

    Article  ADS  CAS  Google Scholar 

  80. Zhou XT, Wang N, Lai HL, Peng Y, Bello I, Lee ST (1999) β-SiC nanorods synthesized by hot filament chemical vapor deposition. Appl. Phys. Lett. 74:3942–3944

    Article  ADS  CAS  Google Scholar 

  81. Chio HJ, Seong HK, Lee JC, Sung YM (2004) Growth and modulation of silicon carbide nanowires. J. Cryst. Growth 269:472–478

    Article  ADS  CAS  Google Scholar 

  82. Ho GW, Wong SW, Kang DJ, Welland ME (2004) Three-dimensional crystalline SiC nanowire flowers. Nanotechnology 15:996–999

    Article  ADS  CAS  Google Scholar 

  83. Li HJ, Li ZJ, Meng AL, Li KZ, Zhang XN, Xu YP (2003) SiC nanowire networks. J. Alloys Compd. 352:279–282

    Article  CAS  Google Scholar 

  84. Zhang YJ, Wang NL, He RR, Chen XH, Zhu J (2001) Synthesis of SiC nanorods using floating catalyst. Solid State Commun. 118:595–598

    Article  ADS  CAS  Google Scholar 

  85. Zhou WM, Yang B, Yang ZX, Zhu F, Yan LJ, Zhang YF (2006) Large-scale synthesis and characterization of SiC nanowires by high-frequency induction heating. Appl. Surf. Sci. 252:5143–5148

    Article  ADS  CAS  Google Scholar 

  86. Zhou WM, Yang ZX, Zhu F, Zhang YF (2006) SiC∕SiO2 nanocables and nanosprings synthesized by catalyst-free method. Physica E 31:9–12

    Article  ADS  CAS  Google Scholar 

  87. Zhang HF, Wang CM, Wang SL (2002) Helical crystalline SiC∕SiO2 core–shell nanowires. Nano Lett. 2:941–944

    Article  ADS  CAS  Google Scholar 

  88. Kong XY, Wang ZL (2003) Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3:1625–1631

    Article  ADS  CAS  Google Scholar 

  89. Shen GZ, Bando YS, Ye CH, Liu BD, Golberg D (2006) Synthesis, characterization and field-emission properties of bamboo-like β-SiC nanowires. Nanotechnology 17:3468–3472

    Article  PubMed  ADS  CAS  Google Scholar 

  90. Shen GZ, Bando YS, Golberg D (2006) Self-assembled hierarchical single-crystalline β-SiC nanoarchitectures. Crystal growth & design 7:35–38

    Article  CAS  Google Scholar 

  91. Li ZJ, Zhang JL, Meng A, Guo JZ (2006) Large-area highly oriented SiC nanowires: Synthesis, Raman, and photoluminescence properties. J. Phys. Chem. B 110:22382–22386

    Article  PubMed  CAS  Google Scholar 

  92. Pan ZW, Lai HL, Au CK, Duan XF, Zhou WY, Shi WS, Wang N, Lee CS, Wong NB, Lee ST, Xie SS (2000) Oriented silicon carbide nanowires: Synthesis and emission properties. Adv. Mater. 12:1186–1190

    Article  CAS  Google Scholar 

  93. Kim HY, Park J, Yang H (2003) Direct synthesis and aligned silicon carbide nanowires from the silicon substrates. Chem. Commun. 37:256–257

    Google Scholar 

  94. Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BK (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J. Am. Chem. Soc. 124:14464–14472

    Article  PubMed  CAS  Google Scholar 

  95. Palen EB, Ruemmeli MH, Gemming T, Knupfer M, Biedermann K, Leonhardt A, Pichler T (2005) Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J. Appl. Phys. 97:056102–056104

    Article  ADS  CAS  Google Scholar 

  96. Taguchi T, Igawa N, Yamamoto H (2004) Synthesis of silicon carbide nanotubes. J. Am. Ceram. Soc. 88:459–461

    Article  CAS  Google Scholar 

  97. Lauhon LJ, Gudiksen MS, Lieber CM (2004) Semiconductor nanowire heterostructures. Philos. Trans. R. Soc. Lond. A 362:1247–1260

    Article  ADS  CAS  Google Scholar 

  98. Lu W, Lieber CM (2006) Semiconductor nanowires. J. Phys. D: Appl. Phys. 39:R387–R406

    Article  ADS  CAS  Google Scholar 

  99. Zhang Y, Suenage K, Colliex C, Iijima S (1998) Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281:973–975

    Article  PubMed  ADS  CAS  Google Scholar 

  100. Zhang Y, Ichihashi T, Landree E, Nihey F, Iijima S (1999) Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 285:1719–1722

    Article  PubMed  CAS  Google Scholar 

  101. Li YB, Bando YS, Golberg D (2004) SiC–SiO2–C coaxial nanocables and chains of carbon nanotube–SiC heterojunctions. Adv. Mater. 16:93–96

    Article  CAS  Google Scholar 

  102. Tang CC, Bando YS, Sato TD, Kurashima KJ (2002) Uniform boron nitride coatings on silicon carbide nanowires. Adv. Mater. 14:1406–1409

    Article  Google Scholar 

  103. Han WQ, Redlich P, Ernst F, Ruhle M (1999) Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates. J. Appl. Lett. 75:1875–1877

    Article  ADS  CAS  Google Scholar 

  104. Tang CC, Bando YS, Sato TD, Kurashima KJ (2002) SiC and its bicrystalline nanowires with uniform BN coatings. Appl. Phys. Lett. 80:4641–4643

    Article  ADS  CAS  Google Scholar 

  105. Wenger KS, Cornu D, Chassagneux F, Ferro G, Epicier T, Miele P (2002) Direct synthesis of β-SiC and h-BN coated β-SiC nanowires. Solid State Commun. 124:157–161

    Article  Google Scholar 

  106. Tang CC, Bando YS, Sato TD, Kurashima KJ (2002) Comparative studies on BN-coating on SiC and Si3N4 nanowires. J. Mater. Chem. 12:1910–1913

    Article  CAS  Google Scholar 

  107. Pokropivny V, Pokropivny A, Lohmus A, Lohmus R, Kovrygin S, Sylenko P, Partch R, Prilutskii E (2006) Extremely high-frequency piezoelectroacoustic transducer based on BN-tube/SiC-whiskers rope. Physica E 37:283–286

    Article  ADS  CAS  Google Scholar 

  108. Zhu YC, Bando YS, Xue DF, Xu FF, Golberg D (2003) Insulating tubular BN sheathing on semiconducting nanowires. J. Am. Chem. Soc. 125:14226–14227

    Article  PubMed  CAS  Google Scholar 

  109. Hu JQ, Bando Y, Zhan JH, Golberg D (2004) Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes). Appl. Phys. Lett. 85:2932–2934

    Article  ADS  CAS  Google Scholar 

  110. Tak YJ, Ryu YH, Yong KJ (2005) Atomically abrupt heteronanojunction of ZnO nanorods on SiC nanowires prepared by a two-step. Nanotechnology 16:1712–1716

    Article  ADS  CAS  Google Scholar 

  111. Tak YG, Yong KJ (2005) ZrO2-coated SiC nanowires prepared by plasma-enhanced atomic layer chemical vapor deposition. Surf. Rev. Lett. 12:215–219

    Article  CAS  Google Scholar 

  112. Lalonde AD, Norton MG, McIlroy DN, Zhang DQ (2005) Metal coatings on SiC nanowires by plasma-enhanced chemical vapor deposition. J. Mater. Res. 20:549–553

    Article  ADS  CAS  Google Scholar 

  113. Min BD, Lee JS, Cho KG, Hwang JW, Kim H, Sung MY, Kim S, Park J, Seo HW, Bae SY, Lee MS, Park SO, Moon JT (2003) Semiconductor nanowires surrounded by cylindrical Al2O3 shells. J. Electron. Mater. 32:1344–1348

    Article  ADS  CAS  Google Scholar 

  114. Zhou J, Liu J, Yang R, Lao CS, Gao PX, Tummala R, Xu NS, Wang ZL (2006) SiC-shell nanostructures fabricated by replicating ZnO nano-objects: A technique for producing hollow nanostructures of desired shape. Small 2:1344–1347

    Article  PubMed  CAS  Google Scholar 

  115. Wu ZS, Deng SZ, Xu NS, Chen J, Zhou J, Chen J (2002) Needle-shaped silicon carbide nanowires: Synthesis and filed electron emission properties. 80:3829–3831

    CAS  Google Scholar 

  116. Wong KW, Zhou XT, Au CK, Lai HL, Lee CS, Lee ST (1999) Filed-emission characteristics of SiC nanowires prepared by chemical-vapor deposition. Appl. Phys. Lett. 75:2918–2920

    Article  ADS  CAS  Google Scholar 

  117. Lo HC, Hwang JS, Chen KH, Hsu CH, Chen CF, Chen LC (2003) SiC-capped nanotip arrays for field emission with ultralow turn-on filed. Appl. Phys. Lett. 83:1420–1422

    Article  ADS  CAS  Google Scholar 

  118. Feng DH, Jia TQ, Li XX, Xu ZZ, Chen J, Deng SZ (2003) Catalytic synthesis and photoluminescence of needle-shaped 3C-SiC nanowires. Solid State Commun. 128:295–297

    Article  ADS  CAS  Google Scholar 

  119. Deng SZ, Li ZB, Wang WL, Xu NS, Zhou J, Zheng XG, Xu HT, Chen J, She JC (2006) Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic surface. Appl. Phys. Lett. 89:023118–023200

    Article  ADS  CAS  Google Scholar 

  120. Zhou WM, Wu YJ, Kong ESW, Zhu F, Hou ZY, Zhang YF (2006) Field emission from nonaligned SiC nanowires. Appl. Surf. Sci. 253:2056–2058

    Article  ADS  CAS  Google Scholar 

  121. Fowler RH, Nordheim LW (1928) Electron beams formed by photoelectric field emission. Proc. R. Soc. Lond. A 119:173–181

    Article  ADS  CAS  Google Scholar 

  122. Tang CC, Bando Y (2003) Effect of BN coatings on oxidation resistance and field emission of SiC nanowires. Appl. Phys. Lett. 83:659–661

    Article  ADS  CAS  Google Scholar 

  123. Ryu YW, Tak YJ, Yong KJ (2005) Direct growth of core–shell SiC–SiO2 nanowires and field emission characteristics. Nanotechnology 16:S370–S374

    Article  ADS  CAS  Google Scholar 

  124. Ryu YH, Park BT, Song YH, Yong K (2004) Carbon-coated SiC nanowires: Direct synthesis from Si and filed emission characteristics. J. Cryst. Growth 271:99–104

    Article  ADS  CAS  Google Scholar 

  125. Liu XM, Yao KF (2005) Large-scale synthesis and photoluminescence properties of SiC∕SiO x nanocables. Nanotechnology 16:2932–2935

    Article  ADS  CAS  Google Scholar 

  126. Li YB, Dorozhkin PS, Bando YS, Golberg D (2005) Controllable modification of SiC nanowires encapsulated in BN nanotubes. Adv. Mater. 17:545–549

    Article  CAS  Google Scholar 

  127. Zhou WM, Fang F, Hou ZY, Yan LJ, Zhang YF (2006) Field-effect transistor based on β-SiC nanowire. IEEE Electron. Device Lett. 27:463–465

    Article  ADS  CAS  Google Scholar 

  128. Avouris P, Martel R, Derycke V, Appenzeller J (2002) Carbon nanotube transistors and logic circuits. Phys. B 323:6–14

    Article  ADS  CAS  Google Scholar 

  129. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Nature 277:1971–1975

    CAS  Google Scholar 

  130. Wang ZL, Dai ZR, Gao RP, Bai ZG, Gole JL (2000) Side-by-side silicon carbide–silica biaxial nanowires: Synthesis, structure, and mechanical properties. Appl. Phys. Lett. 77: 3349–3351

    Article  ADS  CAS  Google Scholar 

  131. Wang ZL, Dai ZR, Gao RP, Bai ZG, Gole JL (2002) Measuring the Young’s modulus of solid nanowires by in situ TEM. J. Electron. Microsc. 51(Suppl.):S79–S85

    Article  Google Scholar 

  132. Yang W, Araki H, Kohyama A, Katoh Y, Hu Q, Suzuki H, Noda T (2004) Tyranno-SA/SiC composite with SiC nanowires in the matrix by CVI process. J. Nucl. Mater. 329–333: 539–543

    Article  CAS  Google Scholar 

  133. Yang W, Araki H, Kohyama A, Thaveethavorn S, Suzuki H, Noda T (2004) Fabrication in-situ SiC nanowires/SiC matrix composite by chemical vapour infiltration process. Mater. Lett. 58:3145–3148

    Article  CAS  Google Scholar 

  134. Yang W, Araki H, Tang CC, Thaveethavorn S, Kohyama A, Suzuki H, Noda T (2005) Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv. Mater. 17:1519–1523

    Article  CAS  Google Scholar 

  135. Vivekchand SRC, Ramamurty U, Rao CNR (2006) Mechanical properties of inorganic nanowire reinforced polymer–matrix composites. Nanotechnology 17:S344–S350

    Article  ADS  Google Scholar 

  136. Zhou WM, Yan LJ, Wang Y, Zhang YF (2006) SiC nanowires: A photocatalytic nanomaterial. Appl. Phys. Lett. 89:013105–013107

    Article  ADS  CAS  Google Scholar 

  137. http://www.nature.com/nnano/reshigh/2006/0706/full/nnano.2006.21.html

  138. Remškar M (2004) Inorganic nanotubes. Adv. Mater. 16:1497–1504

    Article  CAS  Google Scholar 

  139. Tenne R, Rao CNR (2004) Inorganic nanotubes. Philos. Trans. R. Soc. Lond. A 362:2099–2125

    Article  ADS  CAS  Google Scholar 

  140. Ma RZ, Golberg D, Bando YS, Sasaki T (2004) Philos. Trans. R. Soc. Lond. A 362:2161–2186

    Article  ADS  CAS  Google Scholar 

  141. Mpourmpakis G, Froudakis GE (2006) SiC nanotubes: A novel material for hydrogen storage. Nano Lett. 6:1851–1853

    Article  CAS  Google Scholar 

  142. Yan BH, Zhou G, Duan WH, Wu J, Gu BL (2006) Uniaxial-stress effects on electronic properties of silicon carbide nanowires. Appl. Phys. Lett. 89:023104–023106

    Article  ADS  CAS  Google Scholar 

  143. Rurali R (2005) Electronic and structural properties of silicon carbide nanowire. Phys. Rev. Lett. 71:205405.1–205405.7

    ADS  Google Scholar 

  144. Kim TY, Han SS, Lee HM (2004) Nanomechanical behavior of β-SiC nanowire in tension: Molecular dynamic simulations. Mater. Trans. 45:1442–1449

    Article  CAS  Google Scholar 

  145. Moon WH, Ham JK, Hwang HJ (2003) Mechanical properties of SiC nanotubes. Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, vol. 3, pp 158–161

    Google Scholar 

  146. Cicero G, Catellani A, Galli G (2004) Atomic control of water interaction with biocompatible surfaces: The case of SiC(001). Phys. Rev. Lett. 93:016102.1–016102.4

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhou, W., Zhang, Y., Niu, X., Min, G. (2008). One-Dimensional SiC Nanostructures: Synthesis and Properties. In: Wang, Z.M. (eds) One-Dimensional Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74132-1_2

Download citation

Publish with us

Policies and ethics