Skip to main content

Ordering of Self-Assembled Quantum Wires on InP(001) Surfaces

  • Chapter
One-Dimensional Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 3))

  • 1878 Accesses

Abstract

InAs/InAl(Ga)As quantum wires (QWRs) have been grown on InP (001) substrates by molecular beam epitaxy (MBE) technology. A modified S-K growth mode has been presented for the formation of InAs QWRs on InAl(Ga)As/InP (001) substrate, in which the effect of lateral composition modulation in InAlAs buffer layers plays an important role. Vertical anticorrelation of InAs quantum wire superlattices has been observed and attributed to the interplay of strain field distribution and alloy phase separation in InAlAs matrix around InAs QWRs. The structural and optical properties of InAs/InAlAs QWR superlattices have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bimberg, M. Grundmann and N.N. Ledentsov, Quantum Dot Heterostructures, Wiley, New York, 1999.

    Google Scholar 

  2. G. Springholz, V. Holy, P. Mayer, M. Pinczolits, A. Raab, R.T. Lechner, G. Bauer, H. Kang, L. Salamanca-Riba, Mater. Sci. Eng. B 88, 143 (2002).

    Article  Google Scholar 

  3. Vitaliy A. Shchukin and Dieter Bimberg, Rev. Mod. Phys. 71, 1125 (1999).

    Article  ADS  CAS  Google Scholar 

  4. F.A. Zhao, Y.H. Chen, X.L. Ye, P. Jin, B. Xu, Z.G. Wang and C.L. Zhang, J. Phys: Condens. Matter. 16, 7603 (2004).

    Article  ADS  CAS  Google Scholar 

  5. J. Brault, M. Gendry, O. Marty, M. Pitaval, J. Olvares, G. Grenet and G. Hollinger, Appl. Surf. Sci. 162/163, 584 (2000).

    Article  Google Scholar 

  6. D.I. Westwood, Z. Sobiesierski and C.C. Matthai, Appl. Surf. Sci. 144/145, 484 (1999).

    Article  Google Scholar 

  7. P.B. Joyce, T.J. Krzyzewski, G.R. Bell, T.S. Jones, S. Malik, D. Childs and R. Murray, J. Cryst. Growth 227/228, 1000 (2001).

    Article  Google Scholar 

  8. R. Songmuang, S. Kiravittaya and O.G. Schmidt, J. Cryst. Growth 249, 416 (2003).

    Article  ADS  CAS  Google Scholar 

  9. T. Hashizume, Q.K. Xue, A. Ichimiya and T. Sakurai, Phys. Rev. B 51, 4200 (1995).

    Article  ADS  CAS  Google Scholar 

  10. D.E. Wohlert, K.Y. Cheng, K.L. Chang and K.C. Hsieh, J. Vac. Sci. Technol. B 17, 1120 (1999).

    Article  CAS  Google Scholar 

  11. B.H. Koo, T. Hanada, H. Makino, J.H. Chang and T. Yao, J. Cryst. Growth 229, 142 (2001).

    Article  ADS  CAS  Google Scholar 

  12. S. Francoeur, Y. Zhang, A.G. Norman, F. Alsina, A. Mascarenhas, J.L. Reno, E.D. Jones, S.R. Lee and D.M. Follstaedt, Appl. Phys. Lett. 77, 1765 (2000).

    Article  ADS  CAS  Google Scholar 

  13. S. Francoeur, M.C. Hanna, A.G. Norman and A. Mascarenhas, Appl. Phys. Lett. 80, 243 (2002).

    Article  ADS  CAS  Google Scholar 

  14. D.E. Aspnes, J.P. Harbison, A.A. Studna and L.T. Folrez, J. Vac. Sci. Technol. A 6, 1327 (1988).

    Article  ADS  CAS  Google Scholar 

  15. L.C. Su, I.H. Ho, N. Kobayashi and G.B. Stringfellow, J. Cryst. Growth 145, 140 (1994).

    Article  ADS  CAS  Google Scholar 

  16. P. Ernst, Y. Zhang, F.A.J.M. Driessen, A. Mascarenhas, E.D. Jones, C. Geng, F. Scholz and H. Schweizer, J. Appl. Phys. 81, 2815 (1997).

    Article  ADS  Google Scholar 

  17. F. Glas, Phys. Rev. B 62, 7393 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Y.L. Wang, P. Jin, X.L. Ye, C.L. Zhang, G.X. Shi, R.Y. Li, Y.H. Chen and Z.G. Wang, Appl. Phys. Lett. 88, 123104 (2006).

    Article  ADS  CAS  Google Scholar 

  19. X.R. Yang, B. Xu, L.Y. Liang, C.G. Tang, Y.Y. Ren, X.L. Ye and Z.G. Wang, Nanotechnology 18, 215302 (2007).

    Article  ADS  CAS  Google Scholar 

  20. B. Shin, A. Lin, K. Lappo and R.S. Goldman, Appl. Phys. Lett. 80, 3292 (2002).

    Article  ADS  CAS  Google Scholar 

  21. R.S. Goldman, B. Shin and B. Lita, Phys. Status Solidi a 195, 151 (2003).

    Article  ADS  CAS  Google Scholar 

  22. C. Priester and G. Grenet, J. Vac. Sci. Technol. B 16, 2421 (1998).

    Article  CAS  Google Scholar 

  23. J.P. Praseuth, L. Goldstein, P. Henoc and J. Primot, J. Appl. Phys. 61, 215 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Q. Xue, T. Hashizume, J.M. Zhou, T. Sakata, T. Ohno and T. Sakurai, Phys. Rev. Lett. 74, 3177 (1995).

    Article  PubMed  ADS  CAS  Google Scholar 

  25. Z.H. Zhang and K.Y. Cheng, Appl. Phys. Lett. 83, 3183 (2003).

    Article  ADS  CAS  Google Scholar 

  26. A. Konkar, A. Madhukar and P. Chen, Appl. Phys. Lett. 72, 220 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Q. Xie, A. Madhukar, P. Chen and N.P. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995).

    Article  PubMed  ADS  CAS  Google Scholar 

  28. G. Springholz, M. Pinczolits, P. Mayer, V. Holy, G. Bauer, H.H. Kang and L. Salamanca-Riba, Phys. Rev. Lett. 84, 4669 (2000).

    Article  PubMed  ADS  CAS  Google Scholar 

  29. Z. Sun, S.F. Yoon, J. Wu and Z. Wang, J. Appl. Phys. 91, 6021 (2002).

    Article  ADS  CAS  Google Scholar 

  30. J. Wu, B. Xu, H.X. Li, Q.W. Mo, Z.G. Wang, X.M. Zhao and D. Wu, J. Cryst. Growth 197, 95 (1999).

    Article  ADS  CAS  Google Scholar 

  31. H.X. Li, J. Wu, Z.G. Wang and T. Daniels-Race, Appl. Phys. Lett. 75, 1173 (1999).

    Article  ADS  CAS  Google Scholar 

  32. Y.H. Chen, J. Wu, Z.Z. Sun and Z.G. Wang, unpublished.

    Google Scholar 

  33. D.A. Faux and J. Haigh, J. Phys: Condens. Matter 2, 10289 (1990)

    Article  ADS  Google Scholar 

  34. Y. Horikoshi, M. Kawashima and H. Yamaguchi, Jpn. J. Appl. Phys. 25, L868 (1986).

    Article  ADS  CAS  Google Scholar 

  35. Z.G. Wang and J. Wu, Microelectron. J. 34, 379 (2003).

    Article  CAS  Google Scholar 

  36. H.H. Farrell, C.J. Palmstrom, J. Vac. Sci. Technol. B 8, 903 (1990).

    Article  CAS  Google Scholar 

  37. X.Q. Huang, Y.L. Wang, L. Li, L. Liang and F.Q. Liu, Appl. Phys. Lett. 87, 083108 (2005).

    Article  ADS  CAS  Google Scholar 

  38. W. Lei, Y.H. Chen, P. Jin, X.L. Ye, Y.L. Wang, B. Xu and Z.G. Wang, Appl. Phys. Lett. 88, 063114 (2006).

    Article  ADS  CAS  Google Scholar 

  39. H. Yasuda, F. Matsukura, Y. Ohno and H. Ohno, Appl. Surf. Sci. 166, 413 (2000).

    Article  ADS  CAS  Google Scholar 

  40. V.A. Shchukin, D. Bimberg, V.G. Malyshkin and N.N. Ledentsov, Phys. Rev. B 57, 12262 (1998).

    Article  ADS  CAS  Google Scholar 

  41. H. Li, T. Daniels-Race and M.-A. Hasan, Appl. Phys. Lett. 80, 1367 (2002).

    Article  ADS  CAS  Google Scholar 

  42. C. Priester and G. Grenet, Phys. Rev. B 64, 125312 (2001).

    Article  ADS  CAS  Google Scholar 

  43. M. Gendry, J. Brault, B. Salem, G. Bremond and O. Marty, Physica E (Amsterdam) 17, 505 (2003).

    Article  ADS  CAS  Google Scholar 

  44. Y.L. Wang, Y.H. Chen, J. Wu, Z.G. Wang and Y.P. Zeng, Superlattices Microstruct. 38, 151 (2005).

    Article  ADS  CAS  Google Scholar 

  45. W. Lei, Y.H. Chen, Y.L. Wang, X.Q. Huang, Ch. Zhao, J.Q. Liu, B. Xu, P. Jin, Y.P. Zeng, Z.G. Wang, J. Cryst. Growth 286, 23 (2006).

    Article  ADS  CAS  Google Scholar 

  46. Y.L. Wang, J. Wu, Y.H. Chen, Z.G. Wang, 13th International Conference on Semiconducting and Insulating Materials, Beijing, China, 2004.

    Google Scholar 

  47. Y. Masumoto and T. Takagahara, Semiconductor Quantum Dots, Springer-Verlag, Berlin/Heidelberg, 2002.

    Google Scholar 

  48. W. Lei, Y.H. Chen, Y.L. Wang, X.L. Ye, P. Jin, B. Xu, Yi Ping, Zeng, Z.G. Wang, Materials Science Forum, 475–479, 1897 (2005).

    Article  Google Scholar 

  49. Z.Y. Xu, Z.D. Lu, X.P. Yang, Z.L. Yuan, B.Z. Zheng, J.Z. Xu, Phys. Rev. B 54, 11528 (1996).

    Article  ADS  CAS  Google Scholar 

  50. S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, S. Franchi, Phys. Rev. B 60, 8276 (1999).

    Article  ADS  CAS  Google Scholar 

  51. D.E. Wohlert, S.T. Chou, A.C. Chen, K.Y. Cheng, K.C. Hsieh, Appl. Phys. Lett. 68, 2386 (1996).

    Article  ADS  CAS  Google Scholar 

  52. W. Lei, Y.H. Chen, B. Xu, P. Jin, Y.L. Wang, Ch. Zhao and Z.G. Wang, Solid State Commun. 137, 606 (2006).

    Article  ADS  CAS  Google Scholar 

  53. O. Wada, H. Hasegawa, InP-based Materials and Devices: Physics and Technology, Wiley, New York, 1999, p. 80.

    Google Scholar 

  54. K. Mukai, M. Sugawara, Appl. Phys. Lett. 74, 3963 (1999).

    Article  ADS  CAS  Google Scholar 

  55. W. Lei, Y.H. Chen, B. Xu, X.L. Ye, Y.P. Zeng and Z.G. Wang, Nanotechnology 16, 1974 (2005).

    Article  ADS  CAS  Google Scholar 

  56. J.E. Maslara, P.W. Bohnb, S. Agarwala, I. Adesidab, C. Caneau and R. Bhat, Appl. Phys. Lett. 64, 3575 (1994).

    Article  ADS  Google Scholar 

  57. L. Pavesia, R. Houdrk, P. Giannozzi, J. Appl. Phys. 78, 470 (1995).

    Article  ADS  Google Scholar 

  58. S. Tripathy, Thwin-Htoo and S.J. Chua, J. Vac. Sci. Technol. A 22, 111 (2004).

    Article  ADS  CAS  Google Scholar 

  59. L. Artus, R. Cusco, S. Hernandez, A. Patane, A. Polimeni, M. Henini and L. Eaves, Appl. Phys. Lett. 77, 3556 (2000).

    Article  ADS  CAS  Google Scholar 

  60. V. Ryzhii and I. Khmyrova, Proc. SPIE 4986, 190 (2003).

    Article  ADS  CAS  Google Scholar 

  61. W. Lei, Y.H. Chen, B. Xu, P. Jin, Ch. Zhao, L.K. Yu and Z.G. Wang, Nanotechnology 16, 2785 (2005).

    Article  ADS  CAS  Google Scholar 

  62. A. Patane, A. Levin, A. Polimeni, L. Eaves, P.C. Main and M. Henini, Phys. Rev. B 62, 11084 (2000).

    Article  ADS  CAS  Google Scholar 

  63. R.H. Wang, A. Stintz, P.M. Varangis, T.C. Newell, H. Li, K.J. Malloy and L.F. Lester, IEEE Photon. Technol. Lett. 13, 767 (2001).

    Article  ADS  Google Scholar 

  64. T.J. Rotter, A. Stintz, K.J. Malloy, Long wavelength quantum dash lasers grown on InP substrates, OSA trends in optics and photonics (TOPS), Conference on Lasers and Electro-Optics 2003, 88, 1498 (2003)

    Google Scholar 

  65. P. Resneau, M. Calligaro, S. Bansropun, O. Parillaud, M. Krakowski, R. Schwertberger, A. Somers, J.P. Reithmaier and A. Forchel, Proc SPIE 5452, 22 (2004).

    Article  ADS  CAS  Google Scholar 

  66. P. Resneau, M. Calligaro, S. Bansropun, O. Parillaud, M. Krakowski, R. Schwertberger, A. Somers, J.P. Reithmaier, and A. Forchel, High power, very low noise and long term ageing 1.55μm InP-based Fabry-Perot quantum dash lasers under CW operation, Conference on Lasers and Electro-Optics 2005, 3, 1805 (2005).

    Google Scholar 

  67. X.R. Yang, B. Xu, Z.G. Wang, P. Jin, P. Liang, Y. Hu, H. Sun, Y.H. Chen and F.L. Liu, Electron. Lett. 42, 757 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lei, W., Chen, Y.H., Wang, Z.G. (2008). Ordering of Self-Assembled Quantum Wires on InP(001) Surfaces. In: Wang, Z.M. (eds) One-Dimensional Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74132-1_12

Download citation

Publish with us

Policies and ethics