Ordering of Self-Assembled Quantum Wires on InP(001) Surfaces

  • W. Lei
  • Y. H. Chen
  • Z. G. Wang
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 3)


InAs/InAl(Ga)As quantum wires (QWRs) have been grown on InP (001) substrates by molecular beam epitaxy (MBE) technology. A modified S-K growth mode has been presented for the formation of InAs QWRs on InAl(Ga)As/InP (001) substrate, in which the effect of lateral composition modulation in InAlAs buffer layers plays an important role. Vertical anticorrelation of InAs quantum wire superlattices has been observed and attributed to the interplay of strain field distribution and alloy phase separation in InAlAs matrix around InAs QWRs. The structural and optical properties of InAs/InAlAs QWR superlattices have also been discussed.


Migration Enhance Epitaxy InAlAs Layer Lateral Composition Modulation Alloy Phase Separation InAlAs Buffer Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bimberg, M. Grundmann and N.N. Ledentsov, Quantum Dot Heterostructures, Wiley, New York, 1999.Google Scholar
  2. 2.
    G. Springholz, V. Holy, P. Mayer, M. Pinczolits, A. Raab, R.T. Lechner, G. Bauer, H. Kang, L. Salamanca-Riba, Mater. Sci. Eng. B 88, 143 (2002).CrossRefGoogle Scholar
  3. 3.
    Vitaliy A. Shchukin and Dieter Bimberg, Rev. Mod. Phys. 71, 1125 (1999).CrossRefADSGoogle Scholar
  4. 4.
    F.A. Zhao, Y.H. Chen, X.L. Ye, P. Jin, B. Xu, Z.G. Wang and C.L. Zhang, J. Phys: Condens. Matter. 16, 7603 (2004).CrossRefADSGoogle Scholar
  5. 5.
    J. Brault, M. Gendry, O. Marty, M. Pitaval, J. Olvares, G. Grenet and G. Hollinger, Appl. Surf. Sci. 162/163, 584 (2000).CrossRefGoogle Scholar
  6. 6.
    D.I. Westwood, Z. Sobiesierski and C.C. Matthai, Appl. Surf. Sci. 144/145, 484 (1999).CrossRefGoogle Scholar
  7. 7.
    P.B. Joyce, T.J. Krzyzewski, G.R. Bell, T.S. Jones, S. Malik, D. Childs and R. Murray, J. Cryst. Growth 227/228, 1000 (2001).CrossRefGoogle Scholar
  8. 8.
    R. Songmuang, S. Kiravittaya and O.G. Schmidt, J. Cryst. Growth 249, 416 (2003).CrossRefADSGoogle Scholar
  9. 9.
    T. Hashizume, Q.K. Xue, A. Ichimiya and T. Sakurai, Phys. Rev. B 51, 4200 (1995).CrossRefADSGoogle Scholar
  10. 10.
    D.E. Wohlert, K.Y. Cheng, K.L. Chang and K.C. Hsieh, J. Vac. Sci. Technol. B 17, 1120 (1999).CrossRefGoogle Scholar
  11. 11.
    B.H. Koo, T. Hanada, H. Makino, J.H. Chang and T. Yao, J. Cryst. Growth 229, 142 (2001).CrossRefADSGoogle Scholar
  12. 12.
    S. Francoeur, Y. Zhang, A.G. Norman, F. Alsina, A. Mascarenhas, J.L. Reno, E.D. Jones, S.R. Lee and D.M. Follstaedt, Appl. Phys. Lett. 77, 1765 (2000).CrossRefADSGoogle Scholar
  13. 13.
    S. Francoeur, M.C. Hanna, A.G. Norman and A. Mascarenhas, Appl. Phys. Lett. 80, 243 (2002).CrossRefADSGoogle Scholar
  14. 14.
    D.E. Aspnes, J.P. Harbison, A.A. Studna and L.T. Folrez, J. Vac. Sci. Technol. A 6, 1327 (1988).CrossRefADSGoogle Scholar
  15. 15.
    L.C. Su, I.H. Ho, N. Kobayashi and G.B. Stringfellow, J. Cryst. Growth 145, 140 (1994).CrossRefADSGoogle Scholar
  16. 16.
    P. Ernst, Y. Zhang, F.A.J.M. Driessen, A. Mascarenhas, E.D. Jones, C. Geng, F. Scholz and H. Schweizer, J. Appl. Phys. 81, 2815 (1997).CrossRefADSGoogle Scholar
  17. 17.
    F. Glas, Phys. Rev. B 62, 7393 (2000).CrossRefADSGoogle Scholar
  18. 18.
    Y.L. Wang, P. Jin, X.L. Ye, C.L. Zhang, G.X. Shi, R.Y. Li, Y.H. Chen and Z.G. Wang, Appl. Phys. Lett. 88, 123104 (2006).CrossRefADSGoogle Scholar
  19. 19.
    X.R. Yang, B. Xu, L.Y. Liang, C.G. Tang, Y.Y. Ren, X.L. Ye and Z.G. Wang, Nanotechnology 18, 215302 (2007).CrossRefADSGoogle Scholar
  20. 20.
    B. Shin, A. Lin, K. Lappo and R.S. Goldman, Appl. Phys. Lett. 80, 3292 (2002).CrossRefADSGoogle Scholar
  21. 21.
    R.S. Goldman, B. Shin and B. Lita, Phys. Status Solidi a 195, 151 (2003).CrossRefADSGoogle Scholar
  22. 22.
    C. Priester and G. Grenet, J. Vac. Sci. Technol. B 16, 2421 (1998).CrossRefGoogle Scholar
  23. 23.
    J.P. Praseuth, L. Goldstein, P. Henoc and J. Primot, J. Appl. Phys. 61, 215 (1987).CrossRefADSGoogle Scholar
  24. 24.
    Q. Xue, T. Hashizume, J.M. Zhou, T. Sakata, T. Ohno and T. Sakurai, Phys. Rev. Lett. 74, 3177 (1995).PubMedCrossRefADSGoogle Scholar
  25. 25.
    Z.H. Zhang and K.Y. Cheng, Appl. Phys. Lett. 83, 3183 (2003).CrossRefADSGoogle Scholar
  26. 26.
    A. Konkar, A. Madhukar and P. Chen, Appl. Phys. Lett. 72, 220 (1998).CrossRefADSGoogle Scholar
  27. 27.
    Q. Xie, A. Madhukar, P. Chen and N.P. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995).PubMedCrossRefADSGoogle Scholar
  28. 28.
    G. Springholz, M. Pinczolits, P. Mayer, V. Holy, G. Bauer, H.H. Kang and L. Salamanca-Riba, Phys. Rev. Lett. 84, 4669 (2000).PubMedCrossRefADSGoogle Scholar
  29. 29.
    Z. Sun, S.F. Yoon, J. Wu and Z. Wang, J. Appl. Phys. 91, 6021 (2002).CrossRefADSGoogle Scholar
  30. 30.
    J. Wu, B. Xu, H.X. Li, Q.W. Mo, Z.G. Wang, X.M. Zhao and D. Wu, J. Cryst. Growth 197, 95 (1999).CrossRefADSGoogle Scholar
  31. 31.
    H.X. Li, J. Wu, Z.G. Wang and T. Daniels-Race, Appl. Phys. Lett. 75, 1173 (1999).CrossRefADSGoogle Scholar
  32. 32.
    Y.H. Chen, J. Wu, Z.Z. Sun and Z.G. Wang, unpublished.Google Scholar
  33. 33.
    D.A. Faux and J. Haigh, J. Phys: Condens. Matter 2, 10289 (1990)CrossRefADSGoogle Scholar
  34. 34.
    Y. Horikoshi, M. Kawashima and H. Yamaguchi, Jpn. J. Appl. Phys. 25, L868 (1986).CrossRefADSGoogle Scholar
  35. 35.
    Z.G. Wang and J. Wu, Microelectron. J. 34, 379 (2003).CrossRefGoogle Scholar
  36. 36.
    H.H. Farrell, C.J. Palmstrom, J. Vac. Sci. Technol. B 8, 903 (1990).CrossRefGoogle Scholar
  37. 37.
    X.Q. Huang, Y.L. Wang, L. Li, L. Liang and F.Q. Liu, Appl. Phys. Lett. 87, 083108 (2005).CrossRefADSGoogle Scholar
  38. 38.
    W. Lei, Y.H. Chen, P. Jin, X.L. Ye, Y.L. Wang, B. Xu and Z.G. Wang, Appl. Phys. Lett. 88, 063114 (2006).CrossRefADSGoogle Scholar
  39. 39.
    H. Yasuda, F. Matsukura, Y. Ohno and H. Ohno, Appl. Surf. Sci. 166, 413 (2000).CrossRefADSGoogle Scholar
  40. 40.
    V.A. Shchukin, D. Bimberg, V.G. Malyshkin and N.N. Ledentsov, Phys. Rev. B 57, 12262 (1998).CrossRefADSGoogle Scholar
  41. 41.
    H. Li, T. Daniels-Race and M.-A. Hasan, Appl. Phys. Lett. 80, 1367 (2002).CrossRefADSGoogle Scholar
  42. 42.
    C. Priester and G. Grenet, Phys. Rev. B 64, 125312 (2001).CrossRefADSGoogle Scholar
  43. 43.
    M. Gendry, J. Brault, B. Salem, G. Bremond and O. Marty, Physica E (Amsterdam) 17, 505 (2003).CrossRefADSGoogle Scholar
  44. 44.
    Y.L. Wang, Y.H. Chen, J. Wu, Z.G. Wang and Y.P. Zeng, Superlattices Microstruct. 38, 151 (2005).CrossRefADSGoogle Scholar
  45. 45.
    W. Lei, Y.H. Chen, Y.L. Wang, X.Q. Huang, Ch. Zhao, J.Q. Liu, B. Xu, P. Jin, Y.P. Zeng, Z.G. Wang, J. Cryst. Growth 286, 23 (2006).CrossRefADSGoogle Scholar
  46. 46.
    Y.L. Wang, J. Wu, Y.H. Chen, Z.G. Wang, 13th International Conference on Semiconducting and Insulating Materials, Beijing, China, 2004.Google Scholar
  47. 47.
    Y. Masumoto and T. Takagahara, Semiconductor Quantum Dots, Springer-Verlag, Berlin/Heidelberg, 2002.Google Scholar
  48. 48.
    W. Lei, Y.H. Chen, Y.L. Wang, X.L. Ye, P. Jin, B. Xu, Yi Ping, Zeng, Z.G. Wang, Materials Science Forum, 475–479, 1897 (2005).CrossRefGoogle Scholar
  49. 49.
    Z.Y. Xu, Z.D. Lu, X.P. Yang, Z.L. Yuan, B.Z. Zheng, J.Z. Xu, Phys. Rev. B 54, 11528 (1996).CrossRefADSGoogle Scholar
  50. 50.
    S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, S. Franchi, Phys. Rev. B 60, 8276 (1999).CrossRefADSGoogle Scholar
  51. 51.
    D.E. Wohlert, S.T. Chou, A.C. Chen, K.Y. Cheng, K.C. Hsieh, Appl. Phys. Lett. 68, 2386 (1996).CrossRefADSGoogle Scholar
  52. 52.
    W. Lei, Y.H. Chen, B. Xu, P. Jin, Y.L. Wang, Ch. Zhao and Z.G. Wang, Solid State Commun. 137, 606 (2006).CrossRefADSGoogle Scholar
  53. 53.
    O. Wada, H. Hasegawa, InP-based Materials and Devices: Physics and Technology, Wiley, New York, 1999, p. 80.Google Scholar
  54. 54.
    K. Mukai, M. Sugawara, Appl. Phys. Lett. 74, 3963 (1999).CrossRefADSGoogle Scholar
  55. 55.
    W. Lei, Y.H. Chen, B. Xu, X.L. Ye, Y.P. Zeng and Z.G. Wang, Nanotechnology 16, 1974 (2005).CrossRefADSGoogle Scholar
  56. 56.
    J.E. Maslara, P.W. Bohnb, S. Agarwala, I. Adesidab, C. Caneau and R. Bhat, Appl. Phys. Lett. 64, 3575 (1994).CrossRefADSGoogle Scholar
  57. 57.
    L. Pavesia, R. Houdrk, P. Giannozzi, J. Appl. Phys. 78, 470 (1995).CrossRefADSGoogle Scholar
  58. 58.
    S. Tripathy, Thwin-Htoo and S.J. Chua, J. Vac. Sci. Technol. A 22, 111 (2004).CrossRefADSGoogle Scholar
  59. 59.
    L. Artus, R. Cusco, S. Hernandez, A. Patane, A. Polimeni, M. Henini and L. Eaves, Appl. Phys. Lett. 77, 3556 (2000).CrossRefADSGoogle Scholar
  60. 60.
    V. Ryzhii and I. Khmyrova, Proc. SPIE 4986, 190 (2003).CrossRefADSGoogle Scholar
  61. 61.
    W. Lei, Y.H. Chen, B. Xu, P. Jin, Ch. Zhao, L.K. Yu and Z.G. Wang, Nanotechnology 16, 2785 (2005).CrossRefADSGoogle Scholar
  62. 62.
    A. Patane, A. Levin, A. Polimeni, L. Eaves, P.C. Main and M. Henini, Phys. Rev. B 62, 11084 (2000).CrossRefADSGoogle Scholar
  63. 63.
    R.H. Wang, A. Stintz, P.M. Varangis, T.C. Newell, H. Li, K.J. Malloy and L.F. Lester, IEEE Photon. Technol. Lett. 13, 767 (2001).CrossRefADSGoogle Scholar
  64. 64.
    T.J. Rotter, A. Stintz, K.J. Malloy, Long wavelength quantum dash lasers grown on InP substrates, OSA trends in optics and photonics (TOPS), Conference on Lasers and Electro-Optics 2003, 88, 1498 (2003)Google Scholar
  65. 65.
    P. Resneau, M. Calligaro, S. Bansropun, O. Parillaud, M. Krakowski, R. Schwertberger, A. Somers, J.P. Reithmaier and A. Forchel, Proc SPIE 5452, 22 (2004).CrossRefADSGoogle Scholar
  66. 66.
    P. Resneau, M. Calligaro, S. Bansropun, O. Parillaud, M. Krakowski, R. Schwertberger, A. Somers, J.P. Reithmaier, and A. Forchel, High power, very low noise and long term ageing 1.55μm InP-based Fabry-Perot quantum dash lasers under CW operation, Conference on Lasers and Electro-Optics 2005, 3, 1805 (2005).Google Scholar
  67. 67.
    X.R. Yang, B. Xu, Z.G. Wang, P. Jin, P. Liang, Y. Hu, H. Sun, Y.H. Chen and F.L. Liu, Electron. Lett. 42, 757 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • W. Lei
    • 1
  • Y. H. Chen
    • 1
  • Z. G. Wang
    • 1
  1. 1.Key Laboratory of Semiconductor Materials Science, Institute of SemiconductorsChinese Academy of SciencesBeijingP.R. China

Personalised recommendations