One-Dimensional Phase-Change Nanomaterials for Information Storage Applications

  • Xuhui Sun
  • Bin Yu
  • Garrick Ng
  • M. Meyyappan
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 3)


The electrically operated phase-change random access memory (PRAM) features faster write/read, improved endurance, and much simpler fabrication as compared with the traditional transistor-based nonvolatile semiconductor memories. Low-dimensional phase-change materials in nanoscale dimensions offer advantages over their bulk or thin-film counterparts in several aspects such as reduced programmable volume and reduced thermal energies in phase transition. These features contribute to low-power operation, excellent scalability, and fast write/erase time. In this chapter, we present a general bottom-up synthesis approach and systematic material analysis study of one-dimensional chalcogenide-based phase-change materials including germanium telluride (GeTe), and indium selenide (In2Se3) nanowires that are targeted for nonvolatile resistive switching data storage. The phase-change nanowires have been synthesized via thermal evaporation method under vaporliquid—solid (VLS) mechanism. The morphology, composition, and crystal structure of the synthesized nanowires were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy. The as-synthesized nanowires are structurally uniform with single crystalline structures. The one-dimensional phase-change chalcogenide nanowires exhibit significantly reduced melting points, low activation energy, and excellent morphology, making them promising nanomaterials for data storage devices with very low energy consumption and excellent scalability.


Select Area Electron Diffraction Pattern Nanowire Growth IEDM Tech Data Storage Device Indium Selenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ovshinsky, S. R. Phys. Rev. Lett. 1968, 21, 1450.CrossRefADSGoogle Scholar
  2. 2.
    Adler, D.; Shur, M. S.; Silver, M.; Ovshinsky, S. R. J. Appl. Phys. 1980, 51, 3289.CrossRefADSGoogle Scholar
  3. 3.
    Chen, M.; Rubin, K.; Barton, R. Appl. Phys. Lett. 1986, 49, 502.CrossRefADSGoogle Scholar
  4. 4.
    Yamada, N.; Ohno, E.; Nishiochi, K.; Akahira, N.; Takao, M. J. Appl. Phys. 1991, 69, 2849.CrossRefADSGoogle Scholar
  5. 5.
    Coombs, J.; Jongenelis, A.; van Es-Spiekman, W.; Jacobs, B. J. Appl. Phys. 1995, 78, 4906.CrossRefADSGoogle Scholar
  6. 6.
    Volkert, C. A.; Wuttig, M. J. Appl. Phys. 1999, 86, 1808.CrossRefADSGoogle Scholar
  7. 7.
    Yamada, N.; Matsunaga, T. J. Appl. Phys. 2000, 88, 7020.CrossRefADSGoogle Scholar
  8. 8.
    Lai, S.; Lowrey, T. IEDM Tech. Dig. 2001, 803.Google Scholar
  9. 9.
    Lai, S. IEDM Tech. Dig. 2003, 255.Google Scholar
  10. 10.
    Pirovano, A.; Lacaita, A. L.; Benvenuti, A.; Pellizzer, S.; Bez, R. IEEE Trans. Elec. Dev. 2004, 51, 452.CrossRefADSGoogle Scholar
  11. 11.
    Kotz, J.; Shaw, M. P. J. Appl. Phys. 1984, 55, 427.CrossRefADSGoogle Scholar
  12. 12.
    Hwang, Y. N.; Lee, S. H.; Ahn, S. J. IEDM Tech. Dig. 2003, 893.Google Scholar
  13. 13.
    Pirovano, A.; Lacaita, A. L.; Benvenuti, A.; Pellizzer, F.; Hudgens, S.; Bez, R. IEDM Tech. Dig. 2003, 699.Google Scholar
  14. 14.
    Lankhorst, M. H. R.; Ketelaars, B. W. S. M. M.; Wolters, R. A. M. Nat. Mater. 2005, 4, 347–352.PubMedCrossRefADSGoogle Scholar
  15. 15.
    Yu, D.; Wu, J. Q.; Gu, Q. A.; Park, H. K. J. Am. Chem. Soc. 2006, 128, 8148–8149.PubMedCrossRefGoogle Scholar
  16. 16.
    Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  17. 17.
    Cui, Y.; Duan, X. F.; Hu, J. T.; Lieber, C. M. J. Phys. Chem. B 2000, 104, 5213–5216.CrossRefGoogle Scholar
  18. 18.
    Cui, Y.; Lieber, C. M. Science 2001, 291, 851–853.PubMedCrossRefADSGoogle Scholar
  19. 19.
    Ng, H.T.; Han, J.; Yamada, T.; Nguyen, P.; Chen, Y. P.; Meyyappan, M. Nano Lett. 2004, 4, 1247.CrossRefADSGoogle Scholar
  20. 20.
    Duan, X. F.; Huang, Y.; Lieber, C. M. Nano Lett. 2002, 2, 487–490.CrossRefADSGoogle Scholar
  21. 21.
    Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. Nature 2003, 425, 274–278.PubMedCrossRefADSGoogle Scholar
  22. 22.
    Friedman, R. S.; McAlpine, M. C.; Ricketts, D. S.; Ham, D.; Lieber, C. M. Nature 2005, 434, 1085.PubMedCrossRefADSGoogle Scholar
  23. 23.
    Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Nat. Biotechnol. 2005, 23, 1294–1301.PubMedCrossRefGoogle Scholar
  24. 24.
    Chin, A. H.; Vaddiraju, S.; Maslov, A. V.; Ning, C. Z.; Sunkara, M.; Meyyappan, M. Appl. Phys. Lett. 2006, 88, 163115.CrossRefADSGoogle Scholar
  25. 25.
    Wagner R. S. and Ellis W. C. Appl. Phys. Lett. 1964, 4, 89.CrossRefADSGoogle Scholar
  26. 26.
    Heath J. R. and Legeoues F. K. Chem. Phys. Lett. 1993, 208, 263.CrossRefADSGoogle Scholar
  27. 27.
    Law, M.; Goldberger, J.; Yang, P. D. Annu. Rev. Mater. Res. 2004, 34, 83.CrossRefGoogle Scholar
  28. 28.
    Nguyen, P.; Ng, H. T.; Meyyappan, M. Adv. Mat. 2005, 17, 1773.CrossRefGoogle Scholar
  29. 29.
    Sun, X.; Calebotta, G.; Yu, B.; Selvaduray, G.; Meyyappan, M. J. Vac. Sci. Technol. B, 2007, 25, 415.CrossRefGoogle Scholar
  30. 30.
    Gu, Q.; Dang, H. Y.; Cao, J.; Zhao, J. H.; Fan, S. S. Appl. Phys. Lett. 2000, 76, 3020.CrossRefADSGoogle Scholar
  31. 31.
    Kamins, T. I.; Williams, R. S.; Basile, D. P.; Hesjedal, T.; Harris, J. S. J. Appl. Phys. 2001, 89, 1008.CrossRefADSGoogle Scholar
  32. 32.
    Kamins, T. I.; Li, X.; Williams, R. S. Appl. Phys. Lett. 2003, 82, 263.CrossRefADSGoogle Scholar
  33. 33.
    Gogishvili, O. S.; Degaltsev, A. N.; Kononov, G. G.; Lavrinenko, I. P.; Lalykin, S. P. Inorg. Mater. 1988, 24, 944.Google Scholar
  34. 34.
    Sheveleva, T. F.; Plaksina, Y. B.; Markholiya, T. P. Inorg. Mater. 1976, 12, 791.Google Scholar
  35. 35.
    Yashina, L. V.; Kobeleva, S. P.; Shatalova, T. B.; Zlomanov, V. P.; Shtanov, V. I. Solid State Ionics 2001, 141, 513.CrossRefGoogle Scholar
  36. 36.
    Chattopadhyayt, T.; Boucherlet, J. X.; von Schnering, H. G. J. Phys. C 1987, 20, 1431.CrossRefADSGoogle Scholar
  37. 37.
    Lippens, P. E.; Brousse, E.; Jumas, J. C. J. Phys. Chem. Solids 1999, 60, 1663.CrossRefADSGoogle Scholar
  38. 38.
    Shalvoy, R. B.; Fisher, G. B.; Stiles, P. J. Phys. Rev. B 1977, 15, 1680.CrossRefADSGoogle Scholar
  39. 39.
    Shevchik, N. J.; Tejeda, J.; Langer, D. W.; Cardona, M. Phys. Rev. Lett. 1973, 30, 659.CrossRefADSGoogle Scholar
  40. 40.
    Eddief, M.; Julien, C.; Balkanski, M. Mater. Lett. 1984, 2, 432.CrossRefGoogle Scholar
  41. 41.
    Bouzouita, H.; Bouguila, N.; Duchemin, S.; Fiechter, S.; Dhouib, A. Renewable Energy 2002, 25, 131.CrossRefGoogle Scholar
  42. 42.
    Kenawy, M. A.; Zayed, H. A.; El-Soud, A. M. A. J. Mater. Sci. 1990, 1, 115.Google Scholar
  43. 43.
    Lakshmikumar, S. T.; Rastogi, A. C. Sol. Energ. Mat. Sol. C 1994, 32, 7.CrossRefGoogle Scholar
  44. 44.
    Ye, J.; Yoshida, T.; Nakamura, Y.; Nittono, O. Appl. Phys. Lett. 1995, 67, 3066.CrossRefADSGoogle Scholar
  45. 45.
    Julien, C.; Hatzikraniotis, E.; Chevy, A.; Kambas, K. Mater. Res. Bull. 1985, 20, 287.CrossRefGoogle Scholar
  46. 46.
    Lee, H.; Kang, D. H.; L. Tran, Mater. Sci. Eng. B 2005, 119, 196.CrossRefGoogle Scholar
  47. 47.
    Lee, H.; Kim, Y. K.; Kim, D.; Kang, D. H. IEEE Trans. Magnet. 2005, 41, 1034.CrossRefADSGoogle Scholar
  48. 48.
    Julien, C.; Balkanski, M. Mat. Sci. Eng. B 1996, 38, 1.CrossRefGoogle Scholar
  49. 49.
    Sun, X.; Yu, B.; Ng, G.; Nguyen, T.D.; Meyyappan, M. Appl. Phys. Lett. 2006, 89, 233121.CrossRefADSGoogle Scholar
  50. 50.
    Wu, Y.; Yang, P. Adv. Mater. 2001, 13, 520.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xuhui Sun
    • 1
  • Bin Yu
    • 1
  • Garrick Ng
    • 1
  • M. Meyyappan
    • 1
  1. 1.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations