Advertisement

Study of Nanowire Growth Mechanisms: VLS and Si Assisted

  • Hyun D. Park
  • S. M. Prokes
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 3)

Abstract

In this chapter, we have examined several of our recent results on InAs nanowires that have implications to the vapor—liquid—solid (VLS) growth mechanism as well as the newly proposed Si-assisted growth mechanism. In summary, the study on the effect of oxygen during the nanowire growth showed the inhibiting effect of oxygen on the VLS growth mechanism. The results on the observation of size-dependent liquidus depression, more importantly, do not seem applicable on the results of Ti-catalyzed grown Si nanowires, but bring into question the validity of the vapor—solid—solid (VSS) growth mechanism in the Au-catalyzed grown GaAs and InAs nanowires. In the newly proposed nanowire growth mechanism, namely the Si-assisted mechanism using SiO x , a growth model is proposed based on the phase separation of SiO at higher temperature, which forms a stable SiO2 and reactive, nanometer-sized Si clusters. It is suggested that these clusters consequently serve as the nucleating/catalyst sites for the growth of InAs nanowires with the growth mechanism different from VLS, VSS, and OA.

Keywords

Growth Mechanism Nanowire Growth Melting Point Depression GaAs Nanowires Silicon Suboxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang YF, Tang YH, Wang N, Lee CS, Bello I, Lee ST (2000) Germanium nanowires sheathed with an oxide layer. Phys Rev B 61:4518CrossRefADSGoogle Scholar
  2. 2.
    Tang YH, Wang N, Zhang YF, Lee CS, Bello I, Lee ST (1999) Synthesis and characterization of amorphous carbon nanowires. Appl Phys Lett 75:2921CrossRefADSGoogle Scholar
  3. 3.
    Peng HY, Zhou XT, Wang N, Zheng YF, Liao LS, Shi WS, Lee CS, Lee ST (2000) Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition. Chem Phys Lett 327:263CrossRefADSGoogle Scholar
  4. 4.
    Lee ST, Wang N, Zhang YF, Tang YH (1999) Oxide-assisted semiconductor nanowire growth. MRS Bull 24:36Google Scholar
  5. 5.
    Westwater J, Gosain DP, Tomiya S, Usui S, Ruda H (1997) Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J Vac Sci Technol B 15:554CrossRefGoogle Scholar
  6. 6.
    Bootsma GA, Gassen HJ (1971) A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane. J Cryst Growth 10:223CrossRefADSGoogle Scholar
  7. 7.
    Gu G, Burghard M, Kim GT, Dusberg GS, Chiu PW, Krstic V, Roth S, Han WQ (2001) Growth and electrical transport of germanium nanowires. J Appl Phys 90:5747CrossRefADSGoogle Scholar
  8. 8.
    Duan X, Lieber CM (2000) General synthesis of compound semiconductor nanowires. Adv Mater 12:298CrossRefGoogle Scholar
  9. 9.
    Hiruma K, Yazawa M, Katsuyama T, Ogawa K, Haraguchi K, Koguchi M, Kakibayashi H (1995) Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J Appl Phys 77:447CrossRefADSGoogle Scholar
  10. 10.
    Park HD, Prokes SM, Cammarata RC (2005) Growth of epitaxial InAs nanowires in a simple closed system. Appl Phys Lett 87:063110CrossRefADSGoogle Scholar
  11. 11.
    Persson AI, Larsson MW, Stenstrom S, Ohlsson BJ, Sameulson L, Wallenberg LR (2004) Solid-phase diffusion mechanism for GaAs nanowire growth. Nat Mater 3:677PubMedCrossRefADSGoogle Scholar
  12. 12.
    Dick KA, Deppert K, Martensson T, Mandl B, Samuelson L, Seifert W (2005) Failure of the vapor–liquid–solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett 5:761PubMedCrossRefADSGoogle Scholar
  13. 13.
    Park HD, Gaillot A-C, Prokes SM, Cammarata RC (2006) Observation of size dependent liquidus depression in the growth of InAs nanowires. J Cryst Growth 296(2):159CrossRefADSGoogle Scholar
  14. 14.
    Kolb FM, Hofmeister H, Scholz R, Zacharias M, Gosele U, Ma DD, Lee ST (2004) Analysis of silicon nanowires grown by combining SiO evaporation with the VLS mechanism. J Electrochem Soc 151:G472CrossRefGoogle Scholar
  15. 15.
    Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89CrossRefADSGoogle Scholar
  16. 16.
    Wagner RS (1970) Whiskers Technology, Levitt AP (ed), Wiley, New York, pp 47–119Google Scholar
  17. 17.
    Givargizov EI (1978) Growth of whiskers by the vapor–liquid–solid mechanism. In: Kaldis E (ed) Current Topics in Materials Science, vol. 1, North-Holland, AmsterdamGoogle Scholar
  18. 18.
    Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208PubMedCrossRefADSGoogle Scholar
  19. 19.
    Park HD, Hogan TP (2004) Growth of Si wires on a Si(111) under ultrahigh vacuum condition. J Vac Sci Technol B 22:237CrossRefGoogle Scholar
  20. 20.
    Hiruma K, Yazawa M, Haraguchi K, Ogawa K, Katsuyama T, Koguchi M, Kakibayashi H (1993) GaAs free-standing quantum-size wires. J Appl Phys 74:3162CrossRefADSGoogle Scholar
  21. 21.
    Park HD, Prokes SM, Twigg ME, Cammarata RC, Gaillot A-C (2006) Si-assisted growth of InAs nanowires. Appl Phys Lett 89:223125CrossRefADSGoogle Scholar
  22. 22.
    Simic V, Marinkovic Z (1977) Thin film interdiffusion of Au and In at room temperature. Thin Solid Films 41:57CrossRefADSGoogle Scholar
  23. 23.
    Pasquevich AF, Hoffmann A, Vianden R, Wrede U (1985) Oxidation of indium in gold–indium alloys. J Appl Phys 58:3200CrossRefADSGoogle Scholar
  24. 24.
    Kamins TI, Williams RS, Basille DP, Hesjedal T, Harris JS (2001) Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms. J Appl Phys 89:1008CrossRefADSGoogle Scholar
  25. 25.
    Harmand JC, Patriarche G, Pere-Laperne N, Merat-Combes M-N (2005) Analysis of vapor–liquid–solid mechanism in Au-assisted GaAs nanowire growth. Appl Phys Lett 87:203101CrossRefADSGoogle Scholar
  26. 26.
    Cahn JW (1980) Surface stress and the chemical equilibrium of small crystals. Acta Metall 28:1333CrossRefGoogle Scholar
  27. 27.
    Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287CrossRefADSGoogle Scholar
  28. 28.
    Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys Rev B 62:10548CrossRefADSGoogle Scholar
  29. 29.
    Wu Y, Yang P (2000) Germanium/carbon core-sheath nanostructures. Appl Phys Lett 77:43CrossRefADSGoogle Scholar
  30. 30.
    Sheng HW, Liu K, Ma E (1998) Melting and freezing behavior of embedded nanoparticles in ball-milled Al-10 wt% M (M = In, Sn, Bi, Cd, Pb) mixtures. Acta Mater 46:5195CrossRefGoogle Scholar
  31. 31.
    Jin ZH, Sheng HW, Lu K (1999) Melting of Pb clusters without free surfaces. Phys Rev B 60:141CrossRefADSGoogle Scholar
  32. 32.
    Vallee R, Wautelet M, Dauchot JP, Hecq M (2001) Size and segregation effects on the phase diagrams of nanoparticles of binary systems. Nanotechnology 12:68CrossRefADSGoogle Scholar
  33. 33.
    Petrovykh DY, Yang MJ, Whitman LJ (2003) Chemical and electronic properties of sulfur-passivated InAs surfaces. Surf Sci 523:231CrossRefADSGoogle Scholar
  34. 34.
    Pliskin WA, Lehman HS (1965) Structural evaluation of silicon oxide films. J Electrochem Soc 112:1013CrossRefGoogle Scholar
  35. 35.
    Fogarassy E, Slaoui E, Fuchs AC, Regolini JL (1987) Rapid thermal oxidation of silicon monoxide. Appl Phys Lett 51:337CrossRefADSGoogle Scholar
  36. 36.
    Rinnert H, Vergnat M, Matchal G, Burneau A (1999) Strong visible photoluminescence in amorphous SiOx and SiOx: H thin films prepared by thermal evaporation of SiO powder. J Lumin 80:445CrossRefGoogle Scholar
  37. 37.
    Nesheva D, Raptis C, Perakis A, Bineva I, Aneva Z, Levi Z, Alexandrova S, Hofmeister H (2002) Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films. J Appl Phys 92:4678CrossRefADSGoogle Scholar
  38. 38.
    Zhang RQ, Chu TS, Cheung HF, Wang N, Lee ST (2001) Mechanism of oxide-assisted nucleation and growth of silicon nanostructures. Mater Sci Eng C 16:31CrossRefGoogle Scholar
  39. 39.
    Noborisaka J, Motohisa J, Fukui T (2005) Catalyst-free growth of GaAs nanowires by selective-area MOVPE. Appl Phys Lett 86:213102CrossRefADSGoogle Scholar
  40. 40.
    Choi BH, Park CM, Song SH, Son MH, Wang SW, Ahn D, Kim EK (2005) Selective growth of InAs self-assembled quantum dots on nanopatterned SiO2∕Si substrate. Appl Phys Lett 78:10Google Scholar
  41. 41.
    Thurmond CD, Kowalchik M (1960) Bell Syst Tech J 39:169Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hyun D. Park
    • 1
  • S. M. Prokes
    • 1
  1. 1.US Naval Research LabWashington, DCUSA

Personalised recommendations