Amino Acids and Biogenic Amines

  • M. Victoria Moreno-Arribas
  • M. Carmen Polo


Lactic Acid Bacterium Free Amino Acid Biogenic Amine Starter Culture Alcoholic Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agenbach W.A. (1977). A study of must nitrogen content in relation to incomplete fermentations, yeast production and fermentation activity. South Afr. Society Enol. Vitic., 1, 66–87.Google Scholar
  2. Alcaide-Hidalgo J., Moreno-Arribas, M.V, Martín-Álvarez, P.J. & Polo, M.C. (2007). Influence of malolactic fermentation, postfermentative treatments and ageing with lees on nitrogen compounds of red wines. Food Chem., 103, 572–581.CrossRefGoogle Scholar
  3. Alcaide-Hidalgo J., Moreno-Arribas, M.V., Polo, M.C. & Pueyo, E. (2008). Partial characterization of peptides from red wines. Changes during malolactic fermentation and aging with lees. Food Chem., 107, 622–630.CrossRefGoogle Scholar
  4. Bisson, L.F. (1991). Influence of nitrogen on yeast and fermentation of grapes. In: Proceeding of the International Symposium on Nitrogen in Grapes and Wine. The American Society for Enology and Viticulture (pp. 78–89). Seattle, Washington, USA.Google Scholar
  5. Bodmer, S., Imark, C. & Kneubühl, M. (1999). Biogenic amines in foods: Histamine and food processing. Inflamm. Res., 48, 296–300.CrossRefGoogle Scholar
  6. Bover-Cid, S., Izquierdo-Pulido, M., Mariné-Font, A. & Vidal-Carou, M.C. (2006). Biogenic, mono-, di- and polyamine contents in Spanish wines and influence of a limited irrigation. Food Chem., 96, 43–47.CrossRefGoogle Scholar
  7. Buteau, C., Duitschaever, C.L., & Ashton, G.C. (1984). A study of the biogenesis of amines in a Villard Noir wine. Am. J. Enol. Vitic., 35, 228–236.Google Scholar
  8. Caruso, M., Fiore, C., Contrusi, M., Salzano, G., Paparella, A. & Romano, P. (2002). Formation of biogenic amines as criteria for the selection of wine yeast. World J. Microbiol. Biotech., 18, 159–163.CrossRefGoogle Scholar
  9. Choudhury, N., Hansens, W., Engesser, D., Hammes, W.P. & Holzaptel, W.H. (1990). Formation of histamine and tyramine by lactic acid bacteria in decarboxylase assay medium. Lett. Appl. Microbiol., 11, 278–281.CrossRefGoogle Scholar
  10. Constantini, A., Cersosimo, M., Del Prete, V. & García-Moruno, E. (2006). Production of biogenic amines by lactic acid bacteria: screening by PCR, thin-layer chromatography, and high-performance liquid chromatography of strains isolated from wine and must. J. Food Prot., 69, 391–396.Google Scholar
  11. Cooper, T.G. (1982). Nitrogen metabolism in Saccharomyces cerevisiae. In J.N. Strathern, E.W. Jones & J.R. Broach (Eds.), The molecular biology of the yeast Saccharomyces. Metabolism and gene expression (pp. 39–99). New York: Cold Spring Harbor.Google Scholar
  12. Coton, E., Rollan, G., Bertrand, A. & Lonvaud-Funel, A. (1998). Histamine-producing lactic acid bacteria in wines; early detection, frequency and distribution. Am. J. Enol. Vitic., 49, 199–204.Google Scholar
  13. Coton, M., Coton, E., Lucas, P. & Lonvaud, A. (2004). Identification of the gene encoding a putative tyrosine decarboxylase of Carnobacterium divergens 508. Development of molecular tools for the detection of tyramine-producing bacteria. Food Microbiol., 21, 125–130.CrossRefGoogle Scholar
  14. Davis, C.R., Wibowo, D.J., Lee, T.H. & Fleet, G.H. (1986). Growth and metabolism of lactic acid bacteria during and after malolactic fermentation of wines at different pH. Appl. Environ. Microbiol., 51, 539–545.Google Scholar
  15. Delfini, C. (2004). Resistance screening assay of wine lactic acid bacteria on lysozyme: efficace of lysozyme in unclarified grape musts. J. Agric. Food Chem., 52, 1861–1866.CrossRefGoogle Scholar
  16. Dizy, M. & Polo, M.C. (1996). Changes in concentration of nitrogenous compounds during fermentation of white grape musts at pilot plant scale. Food Sci. Technol. Int., 2, 87–93.CrossRefGoogle Scholar
  17. Escudero, A., Hernández-Orte, P., Cacho, J. & Ferreira, V. (2000). Clues about the role of methional as character impact odorant of siome oxidiez wines. J. Agric. Food Chem., 48, 4268–4272.CrossRefGoogle Scholar
  18. Farias, M.E., Manca de Nadra, M.C., Rollan, G.C. & Strasser de Saad, A.M. (1993). Histidine decarboxylase activity in lactic acid bacteria from wine. J. Int. Sci. Vigne Vin, 27, 191–199.Google Scholar
  19. Fernández, P.A.A. & Manca de Nadra, M.C. (2006). Growth response and modifications of organic nitrogen compounds in pure and mixed cultures of lactic acid bacteria from wine. Curr. Microbiol., 52, 86–91.CrossRefGoogle Scholar
  20. Fernández-García, E., Tomillo, J. & Nuñez, M. (1999). Effect of added proteinases and level of starter culture on the formation of biogenic amines in raw milk Manchego cheese. Int. J. Food Microbiol., 52, 189–196.CrossRefGoogle Scholar
  21. Feuillat, M., Brillant, G. & Rochard, J. (1980). Mise en Évidence d’une Production de Proteases Exocellulaires par les Levures au Cours de la Fermentation alcoolique du Mouêt de Raisin. Conn. Vigne Vin, 14, 37–52.Google Scholar
  22. Fraile, P., Garrido, J. & Ancin, C. (2000). Influence of a Saccharomyces cerevisiae selected strain in the volatile composition of rose wines. Evolution during fermentation. J. Agric. Food Chem., 48, 1789–1798.CrossRefGoogle Scholar
  23. García-Moruno, E., Carrascosa, A & Muñoz, R. (2005). A rapid and inexpensive method for the determination of biogenic amines from bacterial cultures by thin-layer chromatography. J. Food Protect., 68, 625–629.Google Scholar
  24. García-Ruiz, A., Bartolomé, B., Martínez-Rodríguez, A., Pueyo, E., Martín-Álvarez, P.J. & Moreno-Arribas, M.V. (2008a). Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control, 19, 835–841.CrossRefGoogle Scholar
  25. García-Ruiz, A., Bartolomé, B. & Moreno-Arribas, M.V. (2008b). Understanding the effect of oak wood treatments and enological tannins in biogenic amine production by lactic acid bacteria in wines XXXI World Congress of Vine and Wine, Verone, 2008.Google Scholar
  26. Garde-Cerdán, T., Arias-Gil, M. & Romano, P. (2007). Formation of biogenic amines throught spontaneous and inoculated wine alcoholic fermentations: effect of SO2. Food Control (en prensa, doi:10.1016/j.foodcont.2006.07.003).Google Scholar
  27. Gardini, F., Zaccarelli, A., Belleti, N., Faustini, F., Cavazza, A., Maruscelli, M., Mastrocola, D. & Suzzi, G. (2005). Factors influencing biogenic amine production by a strain of Oenococcus oeni in a model system. Food Control, 16, 609–618.CrossRefGoogle Scholar
  28. Gerbaux, V. & Monamy, C. (2000). Biogenic amines in Burgundy wines. Contents and origin in wines. Rev. Fr. Oenol., 183, 25–28.Google Scholar
  29. Gil-Agustí, M., Carda-Brochm, S., Monferrer-Pons, L. & Esteve-Romero, J. (2007). Simultaneous determination of tyramine and tryptamine and their precursor amino acids by micellar liquid chromatography and pulsed amperometric detection in wines. J. Chromatogr. A., 1156, 288–295.CrossRefGoogle Scholar
  30. Glòria, M.B., Watson, B.T., Simon-Sarkadii, L. & Daeschel, M.A. (1998). A survey of biogenic amines in Oregon Pinot noir and Cabernet Sauvignon wines. Am. J. Enol. Vitic., 49, 279–282.Google Scholar
  31. Gómez-Alonso, S., Hermosín-Gutiérrez, U. & García-Romero, E. (2007). Simultaneous HPLC analysis of biogenic amines, amino acids and ammonium ion as animoenone derivatives in wine and beer simples. J. Agric. Food Chem., 55, 608–613.CrossRefGoogle Scholar
  32. Granchi, L., Romano, P., Mangani, S., Guerrini, S. & Vincenzini, M. (2005). Production of biogenic amines by wine microorganisms. Bull OIV, 78, 595–609.Google Scholar
  33. Guerrini, S., Mangani, S., Granchi, L. & Vincenzini, M. (2002). Biogenic amine production by Oenococcus oeni. Curr. Microbiol., 44, 374–378.CrossRefGoogle Scholar
  34. Hajós, G., Sass-Kiss, A., Szerdahelye, E. & Bardocz, S. (2000). Changes in biogenic amine content of Tokaj grapes, wines and Aszú-wines. J. Food Sci., 65, 1142–1144.CrossRefGoogle Scholar
  35. Hálasz, A., Baráth, Á., Simon-Sarkadi, L. & Holzapfel, W. (1994). Biogenic amines and their production by microorganisms in food. Trends Food Sci. Tech., 5, 42–49.CrossRefGoogle Scholar
  36. Henschke, P.A. & Jiranek, V. (1993). Yeasts – metabolism of nitrogen compounds. In G.H. Fleet (Ed.), Wine microbiology and biotechnology. (pp. 77–164). Chur, Switzerland: Harwood Academic Publishers.Google Scholar
  37. Herbert, P., Cabrita, M.J., Ratola, N., Laureano, O. & Alves, A. (2005). Free amino acids and biogenic amines in wines and musts from the Alentejo region. Evolution of amines during alcoholic fermentation and relationship with variety, sub-region and vintage. J. Food. Eng., 66, 315–322.CrossRefGoogle Scholar
  38. Hernández-Borges, J., D’Orazio, G., Aturki, Z. & Fanali, S. (2007). Nano-liquid chromatography analysis of dansylated biogenic amines in wine. J. Chromatogr. A, 1147, 192–199.CrossRefGoogle Scholar
  39. Hernández-Orte, P., Cacho, J. & Ferreira, V. (2002). Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study. J. Agric. Food Chem., 50, 2891–2899.CrossRefGoogle Scholar
  40. Hernández-Orte, P., Ibarz, M.J., Cacho, J. & Ferreira, V. (2003). Amino acid determination in grape juices and wines by HPLC using a modification of the 6-aminoquinolyl-n-hydrosysuccinimidyl carbamate (AQC) method. Chromatographia, 58, 29–35.Google Scholar
  41. Hernández-Orte, P., Ibarz, M.J., Cacho, J., & Ferreira, V. (2005). Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine. Food Chem., 89, 163–174.CrossRefGoogle Scholar
  42. Hernández-Orte, P., Ibarz, M.J., Cacho, J. & Ferreira, V. (2006a). Addition of amino acids to grape juice of the Merlot variety: Effect on amino acid uptake and aroma generation during alcoholic fermentation. Food Chem., 98, 300–310.CrossRefGoogle Scholar
  43. Hernández-Orte, P., Peña-Gallego, A., Ibarz, M.J., Cacho, J., Ferreira, V. (2006b). Determination of the biogenic amines in musts and wines before and alter malolactic fermentation using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as the derivatizing agent. J. Chromatogr. A, 1129, 160–164.CrossRefGoogle Scholar
  44. Herraiz, T. & Ough, C.S. (1993). Formation of ethyl-esters of amino acids by yeasts during the alcoholic fermentation of grape juice. Am. J. Enol. Vitic., 44, 41–48.Google Scholar
  45. Herraiz, T., Huang, Z.X. & Ough, C.S. (1993). 1,2,3,4-Tetrahydro-beta-carboline-3-carboxylic acid and 1-methyl-1,2,3,4- tetrahydro-beta carboline-3-carboxylic acid in wines. J. Agric. Food Chem., 41, 455–459.CrossRefGoogle Scholar
  46. Hlabangana, L., Hernández-Cassou, S. & Saurine, L. (2006). Determination of biogenic amines in wines by ion-pair liquid chromatography and post-column derivatization with 1,2-naphthoquinine-4-sulfonate. J. Chromatogr. A, 1130, 130–136.CrossRefGoogle Scholar
  47. Ingledew, W.M. & Kunkee, R.E. (1985). Factors Influencing Sluggish Fermentations of Grape Juice. Am. J. Enol. Vitic., 36, 65–76.Google Scholar
  48. Izquierdo-Pulido, M., Carceller-Rosa, J.M., Mariné-Font, A., & Vidal-Caron, M.C. (1997) Tyramine formation by Pediococcus spp. during beer fermentation. J. Food Prot., 60, 831–836.Google Scholar
  49. Izquierdo-Pulido, M., Mariné-Font, A. & Vidal-Carou, M.C. (2000). Effect of tyrosine on tyramine formation during beer fermentation. Food Chem., 70, 329–332.CrossRefGoogle Scholar
  50. Jansen, S.C., van Dusseldorp, M., Bottema, K.C. & Dubois, A.E. (2003). Intolerance to dietary biogenic amines: A review. Ann. Allerg. Asthama Im., 91, 233–240.Google Scholar
  51. Jiménez-Moreno, N., Goñi, D.T. & Ancín Azpilicueta, C. (2003). Changes in amine concentrations during aging of red wine in oak barrels. J. Agric. Food Chem., 51, 5732–5737.CrossRefGoogle Scholar
  52. Jiranek, V., Langridge, P. & Henschke, P.A. (1995). Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium. Am. J. Enol. Vitic., 46, 75–83.Google Scholar
  53. Joosten, H.M.L.J., & Northolt, M.D., (1989). Detection, growth, and amine-producing capacity of lactobacilli in cheese. Appl. Environ. Microbiol., 55, 2356–2359.Google Scholar
  54. Kaniou, I., Samouris, G., Mouratidou, T., Eleftheriadou, A., & Zantopoulos, A. (2001). Determination of biogenic amines in fresh unpacked and vacuum-packed beef during storage at 4°C. Food Chem., 74, 515–519.CrossRefGoogle Scholar
  55. Kanny, G., Gerbaux, V., Olszewski, A., Frémont, S., Empereur, F., Nabet, F., Cabanis, J. & Moneret-Vautrin, D (2001). No correlation between wine intolerance and histamine content of wine. J. Allergy Clin. Inmmun., 107, 375–378.CrossRefGoogle Scholar
  56. Kiss, J., Korbász, M. & Sass-Kiss, A. (2006). Study of amine composition of botrytized grape berries. J. Agric. Food Chem., 53, 8909–8918.CrossRefGoogle Scholar
  57. Kováks, A., Simon-Sarkadi, L. & Ganzler, K. (1999). Determination of biogenic amines by capillary electrophoresis. J. Chromatogr. A, 836, 305–313.CrossRefGoogle Scholar
  58. Kvasnicka, F. & Voldrich. M. (2006). Determination of biogenic amines by capillary zone electrophoresis with conductimetric detection. J. Chromatogr. A, 1103, 145–149.CrossRefGoogle Scholar
  59. Landete, J.M., Ferrer, S., Pardo, I. (2004) Improved enzymatic method for the rapid determination of histamine in wine. Food Addit. Cont., 21, 1149–1154.CrossRefGoogle Scholar
  60. Landete, J.M., Polo, L., Ferrer, S. & Pardo, I. (2005). Biogenic amines in wines from three Spanish Regions. J. Agric. Food Chem., 53, 1119–1124.CrossRefGoogle Scholar
  61. Landete, J.M., de las Rivas, B., Marcobal, A. & Muñoz, R. (2007a). Molecular methods for the detection of biogenic amine-producing bacteria on foods. Int. J. Food Microbiol., 117, 258–269.CrossRefGoogle Scholar
  62. Landete, J.M., Pardo, I. & Ferrer, S. (2007b). Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control, 18, 1569–1574.CrossRefGoogle Scholar
  63. Le Jeune, C., Lonvaud-Funel, A., Ten Brink, B., Hofstra, H. & van der Vossen, J.M.B.M. (1995). Development of detection system for histidine decarboxylating lactic acid bacteria based DNA probes, PCR and activity test. J. Appl. Bacteriol., 78, 316–326.Google Scholar
  64. Lehtonen, P. (1996). Determination of amines and amino acids in wine – a review. Am. J. Enol. Vitic., 47, 127–133.Google Scholar
  65. Leitao, M.C., Teixeira, H.C., Barreto Crespo, M.T. & San Romao, M.V. (2000). Biogenic amines occurrence in wine. Amino acid decarboxylase and proteolytic activities expression by Oenococcus oeni. J. Agric. Food Chem., 487, 2780–2784.CrossRefGoogle Scholar
  66. Lonvaud-Funel, A. & Joyeux, A. (1994). Histamine production by wine lactic acid bacteria: isolation of a histamine-producing strain of Leuconostoc oenos. J. Appl. Bacteriol., 77, 401–407.Google Scholar
  67. López, R., Santamaría, P., Gutiérrez A.R. & Iñiguez, M. (1996). Changes in amino acids during the alcoholic fermentation of grape juice at different temperatures. Sci. Aliment., 16, 529–535.Google Scholar
  68. Lucas, P. & Lonvaud-Funel, A. (2002). Purification and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiol. Lett., 211, 85–89.CrossRefGoogle Scholar
  69. Lucas, P., Landete, J., Coton, M., Coton, E. & Lonvaud-Funel, A. (2003). The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: Characterization and conservation in tyramine-producing bacteria. FEMS Microbiol. Lett., 229, 65–71.CrossRefGoogle Scholar
  70. Lucas, P.M., Wolken, W.A.M., Claisse, O., Lolkema, J.S. & Lonvaud-Funel, A. (2005). Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardii 0006. Appl. Environ. Microb., 71, 1417–1424.CrossRefGoogle Scholar
  71. Mafra, I., Herbert, P., Santos, L., Barros, P. & Alves, A. (1999). Evaluation of biogenic amines in some portuguese quality wines by HPLC fluorescence detection of OPA derivaties. Am. J. Enol. Vitic., 50, 128–132.Google Scholar
  72. Maijala, R.L. (1993). Formation of histamine and tyramine by some lactic acid bacteria in MRS-broth and modified decarboxylation agar. Lett. Appl. Microbiol., 17, 40–43.CrossRefGoogle Scholar
  73. Manca de Nadra, M.C., Farías, M., Moreno-Arribas, M.V., Pueyo, E. & Polo, M.C. (1997). Proteolytic activity of Leuconostoc oenos: Effect on proteins and polypeptides from white wine. FEMS Microbiol. Lett., 150, 135–139.CrossRefGoogle Scholar
  74. Manca de Nadra, M.C., Farias, M., Moreno-Arribas, M.V., Pueyo, E. & Polo, M.C. (1999). A proteolytic effect of Oenococcus oeni on the nitrogenous macromolecular fraction of red wine. FEMS Microbiol. Lett., 174, 41–47.CrossRefGoogle Scholar
  75. Marcobal, A., de las Rivas, B., Moreno-Arribas, M.V. & Muñoz, R. (2004). Identification of the ornithine decarboxylase gene in the putrescine-producer Oenococcus oeni BIFI-83. FEMS Microbiol. Lett., 239, 213–220.CrossRefGoogle Scholar
  76. Marcobal, A., Polo, M.C., Martín-Álvarez, P.J. & Moreno-Arribas, M.V. (2005a). Biogenic amines content of red Spanish wines. Comparison of a Direct ELISA and an HPLC method for the determination of histamine in wines. Food Res. Int., 38, 387–394.CrossRefGoogle Scholar
  77. Marcobal, A., de las Rivas, B., Moreno-Arribas, M.V. & Muñoz, R. (2005b). Multiplex-PCR method for the Simultaneous Detection of Acid Lactic Bacteria Producing Histamine, Tyramine and Putrescine, Three Major Biogenic Amines. J. Food Prot., 68, 874–878.Google Scholar
  78. Marcobal, A., Martín-Álvarez, P.J., Polo, M.C., Muñoz, R., & Moreno-Arribas, M.V. (2006a). Formation of biogenic amines throughout the industrial manufacture of red wine. J. Food Prot., 69, 391–396.Google Scholar
  79. Marcobal, A., de las Rivas, B., Moreno-Arribas, M.V. & Muñoz, R. (2006b). Evidence for horizontal gene transfer as origin of putrescine-production in Oenococcus oeni RM83. Appl. Envir. Microbiol, 72, 7954–7958.CrossRefGoogle Scholar
  80. Marques, A.P., Leitao, M.C. & San Romao, M.V. (2008). Biogenic amines in wines: Influence of oenological factors. Food Chem., 107, 853–860.CrossRefGoogle Scholar
  81. Martín-Álvarez, P.J., Marcobal, A., Polo, C. & Moreno-Arribas, M.V. (2006). Technological factors influencing biogenic amine production during red wine manufacture. Eur. Food Res. Technol., 222, 420–424.CrossRefGoogle Scholar
  82. Maynard, L.S. & Schenker, V.J. (1996). Monoamine-oxidase inhibition by ethanol in vitro. Nature, 196, 575–576.CrossRefGoogle Scholar
  83. Millán, S., Sanpedro, M.C., Unceta, N., Goicolea, M.A. & Barrio, R.J. (2007). Simple and rapid determination of biogenic amines in wine by liquid chromatography-electronspray ionization ion trap mass spectrometry. Anal. Chim. Acta, 584, 145–152.CrossRefGoogle Scholar
  84. mo Dugo, G., Vilasi, F., La Torre, G.L. & Pellicanò, T.M. (2006). Reverse phase HPLC/DAD determination of biogenic amines as dansyl derivatives in experimental red wines. Food Chem., 95, 672–676.CrossRefGoogle Scholar
  85. Monteiro, F.F. & Bisson, L.F. (1992). Nitrogen supplementation of grape juice. II. Effect on amino-acid and urea release following fermentation. Am. J. Enol. Vitic., 43, 11–17.Google Scholar
  86. Moreno-Arribas, M.V. & Polo, M.C. (2008). Occurrence of lactic acid bacteria and biogenic amines in biologically aged wines. Food Microbiol., 25, 875–881.CrossRefGoogle Scholar
  87. Moreno-Arribas, M. V., Polo, M.C., Jorganes, F. & Muñoz, R. (2003). Screening of biogenic amine production by lactic acid bacteria. Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol., 84, 117–123.Google Scholar
  88. Moreno-Arribas, V. & Lonvaud-Funel, A. (1999). Tyrosine decarboxylase activity of Lactobacillus brevis IOEB 9809 isolated from wine and L. brevis ATCC 367. FEMS Microbiol. Lett., 180, 55–60.Google Scholar
  89. Moreno-Arribas, V. & Lonvaud-Funel, A. (2001). Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine. FEMS Microbiol. Lett., 195, 103–107.CrossRefGoogle Scholar
  90. Moreno-Arribas, V., Pueyo, E., Polo, M.C. & Martín-Álvarez, P.J. (1998). Changes in the amino acid composition of the different nitrogenous fractions during the aging of wine with yeast. J. Agric. Food Chem., 46, 4042–4051.CrossRefGoogle Scholar
  91. Moreno-Arribas, V., Torlois, S., Joyeux, A., Bertrand, A. & Lonvaud-Funel, A. (2000). Isolation, properties and behaviour of tyramine-producing lactic acid bacteria from wine. J. Appl. Microbiol., 88, 584–593.CrossRefGoogle Scholar
  92. Nouadje, G., Simeón, N., Dedieu, F., Nertz, M., Puig, Ph. & Couderc, F. (1997). Determination of twenty eight biogenic amines and amino acids during wine ageing by micellar electrokinetic chromatography and laser-induced fluorescence detection. J. Chromatogr. A, 465, 337–343.CrossRefGoogle Scholar
  93. Önal, A. (2007). A review: current analytical methods for the determination of biogenic amines in foods. Food. Chem., 103, 1475–1486.CrossRefGoogle Scholar
  94. Pozo-Bayón, M.A., Alegría, E.G., Polo, M.C., Tenorio, C., Martín-Álvarez P.J., Calvo de la Banda M.T., Ruiz-Larrrea, F. & Moreno-Arribas, M.V. (2005). Wine Volatile and Amino acid Composition after Malolactic Fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum Starter Cultures. J. Agric. Food Chem., 53, 8729–8735.Google Scholar
  95. Rapp, A., & Versini, G. (1991). Influence of nitrogen compounds in grapes on aroma compounds of wines. In: Proceeding of the International Symposium on Nitrogen in Grapes and Wine. The American Society for Enology and Viticulture (pp. 156–164). Seattle, Washington, USA.Google Scholar
  96. Remize, F., Gaudin, A., Kong, Y., Guzzo, J., Alexandre, H., Krieger, S. & Guilloux-Benatier, M. (2006). Oenococcus oeni preference for peptides: Qualitative and quantitative analysis of nitrogen assimilation. Arch. Microbiol., 185, 459–469.CrossRefGoogle Scholar
  97. Romero, R., Sánchez-Viñas, M., Vázquez, D. & Gracia Bagur, M. (2002). Characterization of selected Spanish table wine samples according to their biogenic amine content from Liquid Chromatographic determination. J. Agric. Food Chem., 50, 4713–4717.CrossRefGoogle Scholar
  98. Santos, B. Simonet, B.M., Rios, A. & Valcárcel, M. (2004). Direct automatic determination of biogenic amines in wine by flow injection-capillary electrophoresis-mass spectrometry. Electrophoresis, 25, 3427.CrossRefGoogle Scholar
  99. Sass-Kiss, A., Szerdahelyi, E. & Hajós, G. (2000). Study of biologically active amines in grapes and wines by HPLC. Chromatographia, 52, S316–S320.CrossRefGoogle Scholar
  100. Silla Santos, M. H. (1996). Biogenic amines: their importance in foods. Int. J. Food Microbiol., 29, 213–231.CrossRefGoogle Scholar
  101. Simó, C., Barbas, C. & Cifuentes, A. (2005). Capillary electrophoresis-mass spectrometry in food analysis. Electrophoresis, 26, 1306–1318.CrossRefGoogle Scholar
  102. Simó, C., Moreno-Arribas, M.V. & Cifuentes, A. (2008). Ion-trap vs. Time-of-flight mass spectrometry coupled to capillary electrophoresis to analyze biogenic amines in wine. J. Chromatogr. A, 1195, 150–156.CrossRefGoogle Scholar
  103. Smit, A.Y. (2007). Evaluating the influence of winemaking practices on biogenic amine production by wine microorganisms. Master Thesis. Stellenbosch University. Stellenbosch, South Africa.Google Scholar
  104. Smith, T.A. (1980). Amines in food. Food Chem., 6, 169–200.CrossRefGoogle Scholar
  105. Soleas, G.L., Carey, M. & Goldberg, D.M. (1999). Method development and cultivar-related differences of nine biogenic amines in Ontario wines. Food Chem., 64, 49–58.CrossRefGoogle Scholar
  106. Somavilla, C., Bravo, F., Iñigo, B. & Burdaspal, P. (1986). Acumulación de histamina en medios naturales y semisintéticos. Alimentaria, 86, 37–42.Google Scholar
  107. Soufleros, E., Barrios, M.L. & Bertrand, A. (1998). Correlation between the content of biogenic amines and other wine compounds. Am. J. Enol. Vitic., 49, 266–278.Google Scholar
  108. Soufleros, E.H., Bouloumpasi, E., Zotou, A. & Lokou, Z. (2007). Determination of biogenic amines in Greek wines by HPLC and ultraviolet detection after dansylation and examination of factors affecting their presence and concentration. Food Chem., 101, 704–716.CrossRefGoogle Scholar
  109. Straub, B.W., Kicherer, M., Schilcher, S.M. & Hammes, W.P. (1995). The formation of biogenic amines by fermentation organisms. Z. Lebensm. Unters. For., 201, 79–82.CrossRefGoogle Scholar
  110. Ten Brink, B, Damink, C., Joosten, H.M.L.J. & Huis in’t Veld, J.H.J. (1990). Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol., 11, 73–84.CrossRefGoogle Scholar
  111. Torrea, D. & Ancín, C. (2002). Content of biogenic amines in a Chardonnay wine obtained through spontaneous and inoculated fermentations. J. Agric. Food Chem., 50, 4895–4899.CrossRefGoogle Scholar
  112. Torrea-Goñi, D.T. & Ancín-Azpilicueta, C. (2001). Influence of yeast strain on biogenic amine content in wines: Relationship with the utilization of amino acids during fermentation. Am. J. Enol. Vitic., 52, 185–190.Google Scholar
  113. Torres-Alves, R. & Teia dos Santos, A. (2002) Detection of histamine-producing bacteria using polymerase chain reaction techniques and DNA probes. Eur. Food Res. Technol., 214, 178–180.CrossRefGoogle Scholar
  114. Tracey, R.P. & Britz, T.J. (1989). The effect of amino acids on malolactic fermentation by Leuconostoc oenos. J. Appl. Bacteriol., 67, 589–596.Google Scholar
  115. Vázquez-Lasa, M.B., Iñiguez-Crespo, M., González-Larraina, M. & González-Guerrero, A. (1998). Biogenic Amines in Rioja Wines. Am. J. Enol. Vitic., 49, 229.Google Scholar
  116. Vidal-Carou, M.C., Codony-Salcedo, R. & Mariné-Font, A. (1990a). Histamine and tyramine in Spanish wines: Relationships with total sulfur dioxide level, volatile acidity and malolactic fermentation intensity. Food Chem., 35, 217–227.CrossRefGoogle Scholar
  117. Vidal-Carou, M.C., Veciana-Nogues, M.T., Marine-Font, A. (1990b). Spectrofluorometric determination of histamine in fish and meat products. J. Assoc. Anal. Chem., 73, 565–567.Google Scholar
  118. Villamiel, M., Polo, M.C. & Moreno-Arribas, M.V. (2008). Nitrogen compounds and polysaccharides changes during the biological ageing of sherry wines. LWT-Food Sci. Technol., 41, 1842–1846.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Victoria Moreno-Arribas
    • 1
  • M. Carmen Polo
  1. 1.Instituto de Fermentaciones Industriales (CSIC)28006 MadridSPAIN

Personalised recommendations